• Title/Summary/Keyword: $\mu-Synthesis$ Method

Search Result 306, Processing Time 0.03 seconds

A study on the speed control system of medium - small size diesel engine by $\mu$-synthesis ($\mu$-synthesis 기법에 의한 중.소형 디젤기관의 속도 제어계에 관한 연구)

  • 양주호;변정환;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a method about the modeling of the medium - small diesel engine for the speed control and designs the robust speed control system by the $\mu$-synthesis, which has good performance, in spite of the existence of model uncertainities and the external disturbance. We confirmed the validity of the proposed modeling method and the designed control system by $\mu$-synthesis through the experimental responses.

  • PDF

A study of design on model following ${\mu}-$synthesis controller for optimal fuel-injection (최적 연료주입 모델 추종형 ${\mu}-$합성 제어기의 설계에 관한 연구)

  • Hwang, Hyun-Joon;Kim, Dong-Wan;Jeong, Ho-Seong;Son, Mu-Hun;Kim, Yeung-Hun;Hwang, Gi-Hyun;Mun, Kyeong-Jun;Park, June-ho;Hwang, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • In this paper, we design an optimal model following ${\mu}-$synthesis control system for fuel-injection of diesel engine which has robust performance and satisfactory command tracking performance in spite of uncertainties of the system. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithm with reference model to the optimal determination of the weighting functions that are given by the D-K iteration method which can design ${\mu}-$synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain which guarantees the robust performance of the system. The ${\mu}-$synthesis control system for fuel-injection designed by the above method has not only the robust performance but also a better command tracking performance than those of the ${\mu}-$synthesis control system designed by trial-and-error method. The effectiveness of this ${\mu}-$synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control (인공위성 자세제어를 위한 H-infinity 제어기 설계 알고리즘 비교 연구)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.57-69
    • /
    • 2016
  • There are three kinds of algorithms(2-ARE, mu-synthesis, LMI) for controller design using closed-loop shaping method. This paper provides the summary of background theory of three algorithms and $H_{\infty}$ controller design results for spacecraft attitude control using the three controller design tools of Matlab$^{TM}$ Toolbox for comparison. As a result, it reveals that LMI design method is more reliable as well as easier than others for spacecraft attitude control design. Comparison results are as follow: 2-ARE method and LMI method provide almost same results in robust stability, robust performance and control authority level. But 2-ARE method is more sensitive than LMI method with respect to proper design of weighting functions: 2-ARE method is more difficult than LMI method in weighting function design. The design result of mu-synthesis method shows worse performance and requires bigger control authority than others.

Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge (지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Choi, Kang-Min;Lee, Jong-Heon;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Mixed H$_2$H$\infty$and $\mu$-synthesis Approach to Coupled Three-Inertia Benchmark Problem (혼합 H$_2$H$\infty$$\mu$-이론을 이용한 벤치마크 문제의 해법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.22-22
    • /
    • 2000
  • This study investigates the use of mixed $H_2/H_{\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertia system which reflects the dynamics of mechanical vibrations. We, first adopt the mixed $H_2/H_{\infty}$ the to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty.

  • PDF

A Design on Model Following ${\mu}$-Synthesis Control System for Optimal Fuel-Injection of Diesel Engine Using Genetic Algorithms (유전 알고리즘을 이용한 디젤 엔진의 최적 연료주입 모델 추종형 ${\mu}$-합성 제어 시스템의 설계)

  • Kim, Dong-Wan;Hwang, Hyun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.587-589
    • /
    • 1997
  • In this paper we design the model following ${\mu}$-synthesis control system for optimal fuel-injection of diesel engine using genetic algorithms. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithms with reference model to the optimal determination of weighting functions that are given by D-K iteration method which can design ${\mu}$-synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain selected adequately. The effectiveness of this ${\mu}$-synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

Mixed $H_2/H_{$\infty}$ and $\mu$-synthesis Approach to the Coupled Three-Inertia Problem (혼합 $H_2/H_{$\infty}$$\mu$-설계이론을 이용한 3관성 문제의 해법)

  • Choe, Yeon-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.896-903
    • /
    • 2001
  • This study investigates the use of mixed $H_2/H_{$\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertial system that reflects the dynamics of mechanical vibrations. This kind of problem requires to be satisfied the robust performance (both in the time and frequency-domain specifications). We, first, adopt the mixed $H_2/H_{$\infty}$ theory to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty. This process permits higher levels of controller authority and reduces the conservativeness of the controller. Finally, the feedforward controller is also used to improve the transient response of the output. We confirm that all design specifications except a complementary sensitivity condition can be achieved.

  • PDF

The Forced Vibration Control of a Flexible Beam using PZT Actuator (PZT 액튜에이터를 이용한 유연한 보의 강제 진동제어)

  • 윤여흥;임숙정;권대규;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.275-278
    • /
    • 2001
  • Research on the forced vibration control of a flexible GFR composite beam using $\mu$-synthesis is performed on this paper. Modal analysis method and modal coordinates are introduced to obtain the state equations of the structural system. Using these equations, Robust control algorithm using $\mu$-synthesis is adopted to suppress the forced vibration of a flexible beam since the designed controller can considered plant uncertainty and external disturbance. Constant disturbance which is generated by shaking the flexible beam as I's natural frequency is effectively rejected by a PZT actuator. Simulations and experiments are carried out with the designed controller and effectiveness of forced vibration suppression strategy is verified by results.

  • PDF

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Robust Control of a Glass Fiber Composite Beam using $\mu$-Synthesis Algorithm

  • Lee, Seong-cheol;Kwon, Tae-Kyu;Yun, Yeo-Hung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. $1^{st}$ and $2^{nd}$ natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by $H_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF