• Title/Summary/Keyword: $\mathbb{Z}_k$ (= the ring of integers of modulo k)

Search Result 3, Processing Time 0.017 seconds

General Linear Group over a Ring of Integers of Modulo k

  • Han, Juncheol
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.255-260
    • /
    • 2006
  • Let $m$ and $k$ be any positive integers, let $\mathbb{Z}_k$ the ring of integers of modulo $k$, let $G_m(\mathbb{Z}_k)$ the group of all $m$ by $m$ nonsingular matrices over $\mathbb{Z}_k$ and let ${\phi}_m(k)$ the order of $G_m(\mathbb{Z}_k)$. In this paper, ${\phi}_m(k)$ can be computed by the following investigation: First, for any relatively prime positive integers $s$ and $t$, $G_m(\mathbb{Z}_{st})$ is isomorphic to $G_m(\mathbb{Z}_s){\times}G_m(\mathbb{Z}_t)$. Secondly, for any positive integer $n$ and any prime $p$, ${\phi}_m(p^n)=p^{m^2}{\cdot}{\phi}_m(p^{n-1})=p{^{2m}}^2{\cdot}{\phi}_m(p^{n-2})={\cdots}=p^{{(n-1)m}^2}{\cdot}{\phi}_m(p)$, and so ${\phi}_m(k)={\phi}_m(p_1^n1){\cdot}{\phi}_m(p_2^{n2}){\cdots}{\phi}_m(p_s^{ns})$ for the prime factorization of $k$, $k=p_1^{n1}{\cdot}p_2^{n2}{\cdots}p_s^{ns}$.

  • PDF

REGULAR ACTION IN ℤn

  • Jeong, Jinsun;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2017
  • Let n be any positive integer and ${\mathbb{Z}}_n=\{0,1,{\cdots},n-1\}$ be the ring of integers modulo n. Let $X_n$ be the set of all nonzero, nonunits of ${\mathbb{Z}}_n$, and $G_n$ be the group of all units of ${\mathbb{Z}}_n$. In this paper, by investigating the regular action on $X_n$ by $G_n$, the following are proved : (1) The number of orbits under the regular action (resp. the number of annihilators in $X_n$) is equal to the number of all divisors (${\neq}1$, n) of n; (2) For any positive integer n, ${\sum}_{g{\in}G_n}\;g{\equiv}0$ (mod n); (3) For any orbit o(x) ($x{\in}X_n$) with ${\mid}o(x){\mid}{\geq}2$, ${\sum}_{y{\in}o(x)}\;y{\equiv}0$ (mod n).

Prime Elements and Irreducible Polynomials over Some Imaginary Quadratic Fields

  • Singthongla, Patiwat;Kanasri, Narakorn Rompurk;Laohakosol, Vichian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.581-600
    • /
    • 2017
  • A classical result of A. Cohn states that, if we express a prime p in base 10 as $$p=a_n10^n+a_{n-1}10^{n-1}+{\cdots}+a_110+a_0$$, then the polynomial $f(x)=a_nx^n+a_{n-1}x^{n-1}+{\cdots}+a_1x+a_0$ is irreducible in ${\mathbb{Z}}[x]$. This problem was subsequently generalized to any base b by Brillhart, Filaseta, and Odlyzko. We establish this result of A. Cohn in $O_K[x]$, K an imaginary quadratic field such that its ring of integers, $O_K$, is a Euclidean domain. For a Gaussian integer ${\beta}$ with ${\mid}{\beta}{\mid}$ > $1+{\sqrt{2}}/2$, we give another representation for any Gaussian integer using a complete residue system modulo ${\beta}$, and then establish an irreducibility criterion in ${\mathbb{Z}}[i][x]$ by applying this result.