• Title/Summary/Keyword: $\gamma-AL_2O_3$

Search Result 306, Processing Time 0.024 seconds

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts (Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구)

  • Sim, Jae-Wook;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

Studies on the Production of Hydrogen by the Steam Reforming of Glycerol Over NI Based Catalysts (NI계 촉매상에서 글리세롤의 수증기 개질반응(Steam Reforming)에 의한 수소제조 연구)

  • Hur, Eun;Moon, Dong-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.493-499
    • /
    • 2010
  • Steam reforming (SR) of glycerol, a main by-product of manufacturing process of bio-diesel, for the production of hydrogen was investigated over the Ni-based catalysts. The Ni-based catalysts were prepared by an impregnation method, and characterized by $N_2$ physisorption, CO chemisorption, XRD and TEM techniques. It was found that the Ni/${\gamma}-Al_2O_3$ catalyst showed higher conversion and catalytic stability for the carbon formation than the other catalysts in the steam reforming of glycerol under the tested conditions. The results suggest that the steam reforming of glycerol over modified Ni/${\gamma}-Al_2O_3$ catalyst minimized carbon formation can be applied in hydrogen station for fuel-cell powered vehicles and fuel processor for stationary and portable fuel cells.

Compouter Image Simulation of ${\gamma}$-Al2O3 in High-Resolution Transimission Electron Microscopy (고분해능 투과전자현미경 연구에 의한 ${\gamma}$-Al2O3의 상 전산모사)

  • ;R. Gronsky
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.276-288
    • /
    • 1989
  • Interpretation of high-resolution transmission electron microscopy images of defects and complex structures such as found in ceramics generally requires matching of the images with compound image simulations for reliable interpretation. A transmission electron microscopy study of the aluminum oxide was carried out at high-resolution, so that the crystal structure of the aluminum oxide could be modelled on an atomic level. In conjunction with computer simulation comparisons, the images reveal directly the atomic structure of the oxide. Results show that comparison between experimental high-resolution electron microscopy images and simulated images leads to a one to one correspondence of the image to the atomic model of the aluminum oxide. The aluminum atoms are disordered in the octahedral sites and the tetrahedral sites in the spinel aluminum oxide.

  • PDF

Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Solid-Acid Catalysts

  • Jun, Ki-Won;Lee, Hye-Soon;Rho, Hyun-Seog;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.803-807
    • /
    • 2002
  • The conversion of dimethyl ether(DME) has been carried out over $\gamma-alumina$, silica-alumina, and modified $\gamma-aluminal$ catalysts. Especially, the water effect has been investigated on purpose to develop a suitable catalyst for one-step synthesis of DME from $CO_2$ hydrgenation, The $\gamma-Al_2O_3$ modified with 1 wt% silica is more active and less deactivated by water than unmodified one. $CO_2has$ no effect on catalytic dehydration of methanol to DME.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

High-Temperature Behavior of Ba-Doped Boehmite Hydrothermally Prepared from $Al(OH)_3$ and $Ba(OH)_2$

  • Fujiyohi, Kaichi;Ishida, Shingo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.379-385
    • /
    • 1999
  • Minute boehmite crystals with high aspect rations, which were hydrothermally synthesized from gibbsite in $Ba(OH)_2$ solution, occluded Ba with the Ba/Al molar ratio of about 0.03 in their interlayers. Their surface areas were about 14$\m^2$/g. The Ba-intercalated bohemite samples were partly used for producing $BaAl_{12}O){19}$ with low sinterability by externally supplementing $Ba(OH)_2$, and for forming transient aluminas. The surface area of $BaAl_{12}O){19}$ obtained by firing at $1500^{\circ}C$ for 3 h was 5.3$\m^2$/g, which was significantly lower than 12$\m^2$/g of the sol-gel origin. While a mixture ${\gamma}$-alumina and BaO is known to from $BaAl_{12}O){19}$ at $1200^{\circ}C$, solid state reaction between η-alumina transformed from the Ba-intercalated boehmite and BaO formed from $Ba(OH)_2$ deposited on the boehmite started above $1300^{\circ}C$. This suggests that large sized $Ba^{2+}$ ion occluded in η-alumina considerably suppresses the diffusion of $Al^{3+}$ ion. The surface area of the Ba-intercalated boehmite fired at $1400^{\circ}C$ for 3h was as high as 14$\m^2$/g indicative of its potential applicability to combustion catalysts. But it was decreased to 5.0$\m^2$/g after firing at $1500^{\circ}C$ for 3 h, accompanied by abrupt formations of $\alpha$-alumina and $BaAl_{12}O){19}$ as main products. The suppression of $\alpha$-alumina formation up to $1400^{\circ}C$ also suggests the significant blocking effect of $Ba^{2+}$ ion on the diffusion of the component ions.

  • PDF

Process variables of gamma-type aluminum trihydride in wet chemical synthesis (감마형 삼수소 알루미늄 습식합성반응의 공정변수 연구)

  • Yang, Yo-Han;Kim, Woo-Ram;Gwon, Yoon-Ja;Park, Mi-Jeong;Kim, Jun-Hyung;Cho, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.214-222
    • /
    • 2018
  • Alane(aluminum trihydride, $AlH_3$) is a candidate material involving high energetic capacity for solid propellant or explosives. In this study aluminum trihydride-etherate ($AlH_3{\cdot}(C_2H_5)_2O$) was synthesized through a wet process, and solid alane was extracted by controlled crystallization. Alane crystals were grown during the crystallization step with phase conversion of aluminum trihydride-etherate to alane using an anti-solvent. Stable crystal forms were found by a 2 hour crystallization process at $85^{\circ}C$. Finally the extracted solid aluminium trihydride consisted mainly of ${\gamma}-type$ with $50-100{\mu}m$ in size.

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF