• Title/Summary/Keyword: $\gamma$-aminobutyric acid receptor

Search Result 45, Processing Time 0.021 seconds

Effect of Propofol on Ion Channels in Acutely Dissociated Dorsal Raphe Neuron of Sprague-Dawley Rats

  • Lee, Bong-Jae;Kwon, Moo-ll;Shin, Min-Chul;Kim, Youn-Jung;Kim, Chang-Ju;Kim, Soon-Ae;Kim, Ee-Hwa;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.189-197
    • /
    • 2001
  • To investigate propofol's effects on ionic currents induced by ${\gamma}-aminobutyric$ acid (GABA) and glycine as well as on those produced by the nicotinic acetylcholine- and glutamate-responsive channels, rat dorsal raphe neurons were acutely dissociated and the nystatin-perforated patch-clamp technique under voltage-clamp conditions was used to observe their responses to the administration of propofol. Propofol evoked ion currents in a dose-dependent manner, and propofol $(10^{-4}\;M)$ was used to elicit ion currents through the activation of $GABA_A,$ glycine, nicotinic acetylcholine and glutamate receptors. Propofol at a clinically relevant concentration $(10^{-5}\;M)$ potentiated $GABA_A-,$ glycine- and NMDA receptor-mediated currents. The potentiating action of propofol on $GABA_A-,$ glycine- and NMDA receptor-mediated responses involved neither opioid receptors nor G-proteins. Apparently, propofol modulates inhibitory and excitatory neurotransmitter-activated ion channels either by acting directly on the receptors or by potentiating the effects of the neurotransmitters, and this modulation appears to be responsible for the majority of the anaesthetic and/or adverse effects.

  • PDF

Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

  • Kim, Min Ji;Park, Young Hong;Yang, Kui Ye;Ju, Jin Sook;Bae, Yong Chul;Han, Seong Kyu;Ahn, Dong Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta ($IL-1{\beta}$) ($1ng/10{\mu}L$) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A ($GABA_A$) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the $IL-1{\beta}$-induced mechanical allodynia. In the control group, application of GABA ($100{\mu}M$) or muscimol ($3{\mu}M$) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the $IL-1{\beta}$-treated rats. These results suggest that some large myelinated $A{\beta}$ fibers gain access to the nociceptive system and elicit pain sensation via $GABA_A$ receptors under inflammatory pain conditions.

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Hwang, Ji-Young;Ma, Shi-Xun;Seo, Jee-Yeon;Ko, Yong-Hyun;Kim, Hyoung-Chun;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Genetic factors in precocious puberty

  • Shim, Young Suk;Lee, Hae Sang;Hwang, Jin Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.4
    • /
    • pp.172-181
    • /
    • 2022
  • Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and non-coding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.

Effect of Lidocaine on the Release, Receptor Binding and Uptake of Amino Acid Neurotransmitters In vitro (Lidocaine이 아미노산 신경전도물질의 유리, 수용체 결합, 및 섭취에 미치는 효과에 관한 시험관내 실험에 관한 연구)

  • Oh, An-Min;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.17-29
    • /
    • 1988
  • The author examined the effects of lidocaine on the veratrine-or potassium-induced release of neurotransmitters to determine the possible role of amino acid neurotransmitters in lidocaine-induced convulsion. The examined transmitters were gamma-aminobutyric acid (GABA), aspartic acid, glutamic acid and norepinephrine which are released from the synaptosomes. Furthermore, the effects of lidocaine on the binding to receptors and synaptosomal uptake of the two transmitters, GABA and glutamic acid, were determined in crude synaptic membranes and synaptosomes. In addition, the effects of propranolol, norepinephrine and serotonin on the release of amino acid neurotransmitters were also examined. The veratrine-induced release of GABA was most severely inhibited by lidocaine and propranolol, while norepinephrine and serotonin reduced the release of aspartic acid and glutamic acid more than the GABA release. Generally the potassium-induced release was much more resistant to the lidocaine action than the veratrine-induced release. Among the neurotransmitters examined, the aspartic acid release was most prone to the lidocaine action, while the GABA release was most resistant. Concentrations of lidocaine below 1 mM did not significantly change the GABA and glutamic acid receptor binding and uptake. These results indicate that the blocking of sodium channels by lidocaine can result in the selective depression of the GABA release. This may result in unlimited excitation of the central nervous system.

  • PDF

Resveratrol Inhibits $GABA_C$ ${\rho}$ Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Choi, Sun-Hye;Hwang, Sung-Hee;Kim, Hyeon-Joong;Lee, Joon-Hee;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2013
  • Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates subsets of homomeric ligand-gated ion channels such as those of 5-$HT_{3A}$ receptors. The ${\gamma}$-aminobutyric $acid_C$($GABA_C$) receptor is mainly expressed in retinal bipolar cells and plays an important role in visual processing. In the present study, we examined the effects of resveratrol on the channel activity of homomeric $GABA_C$ receptor expressed in Xenopus oocytes injected with cRNA encoding human $GABA_C$ ${\rho}$ subunits. Our data show that the application of GABA elicits an inward peak current ($I_{GABA}$) in oocytes that express the $GABA_C$ receptor. Resveratrol treatment had no effect on oocytes injected with $H_2O$ or with $GABA_C$ receptor cRNA. Co-treatment with resveratrol and GABA inhibited $I_{GABA}$ in oocytes with $GABA_C$ receptors. The inhibition of $I_{GABA}$ by resveratrol was in a reversible and concentration-dependent manner. The $IC_{50}$ of resveratrol was $28.9{\pm}2.8{\mu}M$ in oocytes expressing $GABA_C$ receptor. The inhibition of $I_{GABA}$ by resveratrol was in voltage-independent and non-competitive manner. These results indicate that resveratrol might regulate $GABA_C$ receptor expression and that this regulation might be one of the pharmacological actions of resveratrol on the nervous system.

The Development of Phasic and Tonic Inhibition in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.399-405
    • /
    • 2010
  • Gamma-aminobutyric acid (GABA)-ergic inhibition is important in the function of the visual cortex. In a previous study, we reported a developmental increase in $GABA_A$ receptor-mediated inhibition in the rat visual cortex from 3 to 5 weeks of age. Because this developmental increase is crucial to the regulation of the induction of long-term synaptic plasticity, in the present study we investigated in detail the postnatal development of phasic and tonic inhibition. The amplitude of phasic inhibition evoked by electrical stimulation increased during development from 3 to 8 weeks of age, and the peak time and decay kinetics of inhibitory postsynaptic potential (IPSP) and current (IPSC) slowed progressively. Since the membrane time constant decreased during this period, passive membrane properties might not be involved in the kinetic changes of IPSP and IPSC. Tonic inhibition, another mode of $GABA_A$ receptor-mediated inhibition, also increased developmentally and reached a plateau at 5 weeks of age. These results indicate that the time course of the postnatal development of GABAergic inhibition matched well that of the functional maturation of the visual cortex. Thus, the present study provides significant insight into the roles of inhibitory development in the functional maturation of the visual cortical circuits.

Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on $GABA_C$ Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Joon-Hee;Lee, Sang-Mok;Ahn, Yun Gyong;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The ${\gamma}$-aminobutyric acid $receptor_C$ ($GABA_C$) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on $GABA_C$ receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant $GABA_C$ receptor (${\rho}$ 1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing $GABA_C$ receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current ($I_{GABA}$). Interestingly, pre-application of M4 inhibited $I_{GABA}$ more potently than CK in a dose- dependent and reversible manner. The half-inhibitory concentration ($IC_{50}$) values of CK and M4 were $52.1{\pm}2.3$ and $45.7{\pm}3.9{\mu}M$, respectively. Inhibition of $I_{GABA}$ by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate $GABA_C$ receptor channel activity in the brain, including in the eyes.

Sinomenine, an Alkaloid Derived from Sinomenium acutum Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep in Rodents

  • Yoo, Jae Hyeon;Ha, Tae-Woo;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.586-592
    • /
    • 2017
  • Sinomenium acutum has been long used in the preparations of traditional medicine in Japan, China and Korea for the treatment of various disorders including rheumatism, fever, pulmonary diseases and mood disorders. Recently, it was reported that Sinomenium acutum, has sedative and anxiolytic effects mediated by GABA-ergic systems. These experiments were performed to investigate whether sinomenine (SIN), an alkaloid derived from Sinomenium acutum enhances pentobarbital-induced sleep via ${\gamma}$-aminobutyric acid (GABA)-ergic systems, and modulates sleep architecture in mice. Oral administration of SIN (40 mg/kg) markedly reduced spontaneous locomotor activity, similar to diazepam (a benzodiazepine agonist) in mice. SIN shortened sleep latency, and increased total sleep time in a dose-dependent manner when co-administrated with pentobarbital (42 mg/kg, i.p.). SIN also increased the number of sleeping mice and total sleep time by concomitant administration with the sub-hypnotic dosage of pentobarbital (28 mg/kg, i.p.). SIN reduced the number of sleep-wake cycles, and increased total sleep time and non-rapid eye movement (NREM) sleep. In addition, SIN also increased chloride influx in the primary cultured hypothalamic neuronal cells. Furthermore, protein overexpression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptor subunits by western blot were found, being activated by SIN. In conclusion, SIN augments pentobarbital-induced sleeping behaviors through $GABA_A$-ergic systems, and increased NREM sleep. It could be a candidate for the treatment of insomnia.

Alterations of Spontaneous Sleep Architecture and Cortical Electroencephalogram Power Spectra by Red Ginseng Extract via GABAAergic Systems

  • Yang, Shu-Long;Nam, Sang-Yoon;Han, Jin-Yi;Kim, Jun-Cheol;Lee, Ki-Nam;Hong, Jin-Tae;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2010
  • This study was undertaken to discover the effects and possible mechanisms of the effect of red ginseng extract (RGE) on spontaneous sleep. The effects of a low dose (10 mg/kg) and a high dose (200 mg/kg) of RGE were compared in rats. After recovery from a surgical operation enabling electroencephalograms recordings, rats were administered RGE orally. RGE was administered orally for 1 day or once per day for 5 days in either 10 or 200 mg/kg doses. Polygraphic signs were recorded for 12 h after oral administration of RGE. Both treatment with a large dose (200 mg/kg) of RGE for one day and treatment with either a large or a small dose for 5 days reduced the number of sleep.wake cycles. Daily treatment with RGE (either 10 or 200 mg/kg) for 5 days augmented NREM and total sleep, but reduced wakefulness. Delta wave activity recorded during non-REM (NREM) sleep and REM sleep was increased after one treatment with RGE (either 10 or 200 mg/kg). Delta wave activity during NREM was enhanced after daily treatment with RGE (either 10 or 200 mg/kg) for 5 days. Both alpha and beta subunits of the $\gamma$-aminobutyric acid $(GABA)_A$ receptor were significantly over-expressed in the hypothalamus of the RGE-treated groups. Moreover, the expression of glutamic acid decarboxylase was also increased in the hypothalamus. These results demonstrate that RGE may regulate spontaneous sleep via $GABA_A$ergic systems.