• 제목/요약/키워드: $\beta-Al_5FeSi$

검색결과 29건 처리시간 0.022초

Al-Si-Cu합금에서 Fe 함량에 따른 $\beta-Al_5FeSi$ 금속간화합물의 형성 및 응고미세조직 특성 (Formation and Microstructure Characteristics of $\beta-Al_5FeSi$ Intermetallic Compound in the Al-Si-Cu Alloys with the Variation of Fe Content)

  • 김봉환;이상목
    • 한국주조공학회지
    • /
    • 제29권5호
    • /
    • pp.225-232
    • /
    • 2009
  • For comprehensive understanding of the formation behavior of $\beta-Al_5FeSi$ phase in Al-Si-Cu alloys with the existence of Fe element, microstructure characterizations were performed using combined analysis of OM, SEM-EDS, XRD. Especially, experimental and predictive works on solidification events of $\beta-Al_5FeSi$ phase as well as other phases formed together with $\beta-Al_5FeSi$ have been carried out by using DSC analysis and Java-based Materials Properties software (J. Mat. Pro.). Primary and eutectic $\beta-Al_5FeSi$ phases were able to distinguish from each other on microstructures by their morphological features. Primary $\beta-Al_5FeSi$ phase was seen to have rough surface perpendicular to growth direction, indicating free attachment of solute atoms in liquid state. On the other hand, the eutectic $\beta-Al_5FeSi$ phase was formed with plain and straight surface during eutectic reaction together with $\alpha$-Al phase. The eutectic reaction of $\beta-Al_5FeSi$ and $\alpha$-Al phases was seen to be able to separate into each formation depending on cooling rate.

고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향 (Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제33권3호
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향 (Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation)

  • 김헌주;정창열
    • 한국주조공학회지
    • /
    • 제33권6호
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과 (The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe)

  • 한상원
    • 한국주조공학회지
    • /
    • 제25권3호
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

분사주조한 과공정 Al-Si-Fe 합금의 기계적 및 열적 특성에 관한 고찰 (A Study on the Mechanical and Thermal Properties of Spray-cast Hypereutectic Al-Si-Fe Alloys)

  • 박재성;류민;윤의박;윤우영;김권희;김명호
    • 한국주조공학회지
    • /
    • 제26권3호
    • /
    • pp.123-128
    • /
    • 2006
  • Mechanical and thermal properties of spray-cast hypereutectic Al-20wt.%Si-xwt.%Fe alloys (x=0, 1, 3, 5) were investigated. After the spray-casting, hot extrusion was performed at $400^{\circ}C$. Intermetallic compound (${\beta}-Al_5FeSi$) and primary Si are observed in the spray-cast aluminum alloys. The size of primary Si and intermetallic compound of the spray-aluminum alloys became finer and more uniformly distributed than that of the permanent mold cast ones. Ultimate tensile strength of the spray-cast aluminum alloys increased by increasing Fe contents, but that of the permanent mold cast aluminum alloys decreased by increasing Fe contents possibly due to increased amount of coarse intermatallic compound. The coefficient of thermal expansion (CTEs) of the aluminum alloys became lower with finer primary Si and intermetallic compound, and this is attributed to the increased amount of interfacial area between the aluminum matrix and the phases of finer Si and intermetallic compound.

고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향 (Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제33권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

급속응고 Al-Si-Fe 합금의 압출거동 및 유한요소 해석 (Extrusion Behavior and Finite Element Analysis of Rapidly Solidified Al-Si-Fe Alloys)

  • 정기승
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.56-61
    • /
    • 1999
  • The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable $\delta$ phase($Al_4SiFe_2$) intermetallic compound disappears and the equilibrium $\beta$ phase($Al_5FeSi_2$) is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.

  • PDF

Ethyl Silicate를 이용한 고순도 $\beta$-SiC 미분말 합성에 관한 연구(III) 첨가제의 영향 (A Study on Synthesis of High Purity $\beta$-SiC Fine Powders from Ethyl Silicate(III) Effect of Additives)

  • 최용식;박금철
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.416-422
    • /
    • 1989
  • The particle size of synthesized SiC powders was decreased with increasing carbon content when the mixture of carbon and silica was carbonized at 1, 45$0^{\circ}C$ after hydrolysis of the mixture with the ranges of 3.1 to 3.5 in the mole ratio of Carbon/Alkoxide. The reacted fraction of $\beta$-SiC nearly had nothing to do with the mole ratio of Carbon/Alkoxide. When the reaction was made by adding 0.5wt% additives in the composition of 3.1 in the mole ratio of carbon/alkoxide, the additives decreased the yield of $\beta$-SiC and its sequence was Ba2O3>B>Fe>Al>Al2O3>Si. The effect of additives promoted the transformation of $\beta$-SiC to $\alpha$-SiC form and shwoed the increasing tendency of lattice constant. The two colors of $\beta$-SiC powder came out : one was the black grey with addition of Al, Al2O3 and B the other the light grey with addition of Fe, B2O3 and Si.

  • PDF

기공을 포함한 피로손상 알루미늄 6061-T6의 초음파 특성평가 (Ultrasonic linear and nonlinear properties of fatigued aluminium 6061-T6 with voids)

  • 강토;송성진;;박진호
    • 한국가스학회지
    • /
    • 제19권5호
    • /
    • pp.41-46
    • /
    • 2015
  • 알루미늄 6061-T6는 $Mg_2Si$${\beta}-Al_5FeSi$로 구성되며, 피로 손상도가 증가하면 ${\beta}-Al_5FeSi$주변에서 기공이 발생하고 성장하는 것으로 알려져 있다. 본 연구에서는 우선 알루미늄 6061-T6 시편에 대한 SEM 촬영을 통해 이러한 현상을 확인하였다. 이후, 피로 손상도에 따라 이 시편의 전위댐핑 (dislocation damping), 정합변형률 (coherency strain), 및 기공 (void)이 감쇠계수와 비선형인자에 미치는 영향을 실험적으로 관찰하였다. 그 결과 비선형인자는 피로 손상도가 증가에 따라 증가하다가 피로수명 75% 이후에서는 감소하는 것을 확인하였다. 이는 전위댐핑과 정합변형률이 증가할수록 비선형인자는 증가하지만, 기공이 증가하면 초음파의 산란이 커져 비선형인자가 감소하는 것으로 해석할 수 있다. 따라서, 피로에 따라 조직변화가 복잡하게 나타나는 재료의 열화 평가에 있어서는 비선형인자를 주의하여 활용하여야 한다는 결론을 얻었다.