DOI QR코드

DOI QR Code

Ultrasonic linear and nonlinear properties of fatigued aluminium 6061-T6 with voids

기공을 포함한 피로손상 알루미늄 6061-T6의 초음파 특성평가

  • Kang, To (Korea Atomic Energy Research Institute) ;
  • Song, Sung-Jin (Dept. of Mechanical Engineering, Sungkyunkwan University) ;
  • Na, Jeong K. (Wyle Laboratories Inc.) ;
  • Park, Jin-Ho (Korea Atomic Energy Research Institute)
  • Received : 2015.08.10
  • Accepted : 2015.10.10
  • Published : 2015.10.30

Abstract

It is known that in aluminum 6061-T6, which is composed of $Mg_2Si$ and ${\beta}-Al_5FeSi$, void nucleation grows around ${\beta}-Al_5FeSi$ of Al606-T6. In this work, growth of voids was checked by scanning a 6061-T6 specimen with SEM observation. The effects of dislocation damping, coherency strain and voids on ultrasonic attenuation and nonlinearity parameters were experimentally measured. It was observed that a nonlinearity parameter increases until 75 percent of fatigue life and decreases after that. From the results, the authors inferred that dislocation damping and coherency damping increase nonlinearity parameters and void nucleation decreases them as ultrasonic scattering increases with void. The application of nonlinearity parameters in estimating degradation of materials with complex microstructures through fatigue process, therefore, should be carefully considered.

알루미늄 6061-T6는 $Mg_2Si$${\beta}-Al_5FeSi$로 구성되며, 피로 손상도가 증가하면 ${\beta}-Al_5FeSi$주변에서 기공이 발생하고 성장하는 것으로 알려져 있다. 본 연구에서는 우선 알루미늄 6061-T6 시편에 대한 SEM 촬영을 통해 이러한 현상을 확인하였다. 이후, 피로 손상도에 따라 이 시편의 전위댐핑 (dislocation damping), 정합변형률 (coherency strain), 및 기공 (void)이 감쇠계수와 비선형인자에 미치는 영향을 실험적으로 관찰하였다. 그 결과 비선형인자는 피로 손상도가 증가에 따라 증가하다가 피로수명 75% 이후에서는 감소하는 것을 확인하였다. 이는 전위댐핑과 정합변형률이 증가할수록 비선형인자는 증가하지만, 기공이 증가하면 초음파의 산란이 커져 비선형인자가 감소하는 것으로 해석할 수 있다. 따라서, 피로에 따라 조직변화가 복잡하게 나타나는 재료의 열화 평가에 있어서는 비선형인자를 주의하여 활용하여야 한다는 결론을 얻었다.

Keywords

References

  1. Wang, Q. G., "Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357", Metall Mater Trans A, 34(12), 2887-2899, (2003) https://doi.org/10.1007/s11661-003-0189-7
  2. Ran, G., Zhou, J. E., Wang, Q. G., "Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy", Jounral of Material Process Technology, 207(1-3), 46-52, (2008) https://doi.org/10.1016/j.jmatprotec.2007.12.050
  3. Agarwal, H., Gokhale, A. M., Graham, S., Horstemeyer M. F., "Void growth in 6061-aluminum alloy under triaxial stress state", Materials Science Engineering A, 341(1-2), 35-42, (2003) https://doi.org/10.1016/S0921-5093(02)00073-4
  4. Raj, R., Ashby, M. F., "Intergranular fracture at elevated temperature", Acta Metall, 23, 363-371, (1975)
  5. Joshi, N.R., Green Jr. R.E., "Ultrasonic detection of fatigue damage", Engineering Fracture Mechanics, 4(3), 577-583, (1972) https://doi.org/10.1016/0013-7944(72)90067-7
  6. Hirao, M., Ogi, H., Suzuki, N., Ohtani, T., "Ultrasonic attenuation peak during fatigue of polycrystalline copper", Acta Materilia, 48(2), 517-524, (2000) https://doi.org/10.1016/S1359-6454(99)00346-8
  7. Cantrell, J.H., Yost, W.T., "Nonlniear ultrasconic characterization of fatigue micro structures", International Journal of Fatigue, 23(1), 487-490, (2001) https://doi.org/10.1016/S0142-1123(01)00162-1
  8. Kang, T., Kim, H. H., Song, S. J., Kim, H. J., "Characterization of fatigue damage of Al6061-T6 with ultrasound", NDT & E International., 52, pp. 51-56, (2012) https://doi.org/10.1016/j.ndteint.2012.08.001
  9. Truell, R., Elbaum, C., Chick, B.B., Ultrasonic methods in solid state physics, Academic Press, New York and London, (1969)
  10. Na, J. K., Yost, W. T., Cantrell, J. H., Kessel, G. L., "Effect of surface roughness and nonparallelism on the measruement of the acoustic nonliearity parameter in steam turbine blades", Review of Progress in Quantitative Nondestructive Evaluation, 19, 1417-1424
  11. Gauster, W.B., Breazeale M.A., "Detector for measurement of ultrasonic strain amplitudes in solid", 37(11), Review of Scientific Instruments, 1544-1548, (1966) https://doi.org/10.1063/1.1720040
  12. Kang, T., Na, J.K., Song, S.-J., Park, J.H., "Nonlinear acoustics for practical applications", Proc. of SPIE, 9473, 94370U1-94370U 2, (2015)
  13. Wang, Q. G., "Fatigue voids in structural Al-alloys under high-frequency cyclic loading", Journal of Materials Science, 39(1), 365-367, (2004) https://doi.org/10.1023/B:JMSC.0000008091.55395.ee
  14. Martin B.G., "Ultrasonic attenuation due to voids in fiber-reinforced plastics", NDT&E International, 9(5), 242-246, (1976) https://doi.org/10.1016/0308-9126(76)90004-3