• Title/Summary/Keyword: $\beta$-Lactose

Search Result 179, Processing Time 0.02 seconds

Cultural Characteristics of Lactobacillus amylovorus IMC-1 Producing Antibacterial Substance (항균성 물질을 생산하는 Lactobacillus amylovorus IMC-1의 배양학적 특성)

  • Mok, Jong-Soo;Song, Ki-Cheol;Kim, Young-Mog;Chang, Dong-Suck
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.249-254
    • /
    • 2002
  • To determine the abilities as both lactic starter and probiotics for fermented foods, we investigated the potency of acid production, proteolytic activity and lactose metabolism of Lactobacillus amylovorus IMC-1. And the strain was cultured with lactococci in 10% skim milk medium. It was also examined the bactericidal action of antibacterial substance, produced by the strain IMC-1, against pathogenic bacteria. L. amylovorus IMC-1 showed excellent production of acid in 10% skim milk supplemented with yeast extract, and produced 0.8 and 2.7% of acid at 12 and 72 h incubation, respectively. It was found that the activity of ${\beta}-galactosidase$, about $39\;{\mu}M/minute/dry$ cell weight (mg), was stronger than that of $phospho-{\beta}-galactosidase$ in the strain IMC-1. The strain showed weak proteolytic activity in 10% skim milk, thus it produced 6 and $69\;{\mu}g/mL$ of free tyrosine at 12 and 72 h cultivation, respectively. It was known that the strain utilized mainly ${\alpha}-casein$ than ${\beta}-casein$ from patterns of SDS-PAGE. Mixed culture produced more acid than single cultures of L. amylovorus IMC-1 and Streptococcus thermophilus NIAI 510. Single culture of Str. thermophilus and mixed culture showed increasing cheese flavor with incubation times. Optimal fermentation time of mixed culture for the acid production and flora of lactic starter was 16 and 12 h by adding 0.1 and 0.5% of yeast extract to 10% skim milk, respectively. Antibacterial substance produced by the strain IMC-1 reduced about 2 log of the viable cell counts of both Escherichia coli O157 and Shigella flexneri after 24 and 4 h incubation, and they were not detected after 48 and 6 h incubation, respectively.

Analysis of Volatile Flavor Compounds in Jeju Apple Mango by Using Different Extraction Methods (추출방법에 따른 제주산 애플망고의 휘발성 향기성분 분석)

  • An, Mi-Ran;Keum, Young-Soo;Lee, Si-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.775-783
    • /
    • 2015
  • This study was carried out to investigate the physicochemical properties and volatile ingredients of Jeju Apple mango subjected to different extraction methods and GC/MS. The crude protein, fat, and ash contents were $0.22{\pm}0.01$, $0.09{\pm}0.00$, and $0.27{\pm}0.02%$, respectively, and contents of free sugar increased in the order of sucrose, fructose, and glucose, whereas maltose, lactose, and galactose were not detected. The numbers of volatile flavor compounds obtained by the SE (solvent extraction), SDE (simultaneous steam distillation extraction), and SPME (solid-phase micro-extraction) methods were 51, 59, and 71, respectively. The percentages of extracted volatile flavor compounds in mango were 11.44, 15.68, and 73.54% by the SE, SDE, and SPME methods, respectively. The most abundant compounds found in Jeju Apple mango were terpenes and their derivatives, which accounted for 44.49~94.57% of total volatiles obtained. SPME method was considered to be the most effective extraction method in terms of the numbers of detected compounds and their amounts. ${\delta}$-3-Carene was identified as the dominant compound in mango, whereas ${\alpha}$-phellandrene, ${\gamma}$-terpinene, trans-${\beta}$-ocimene, ${\alpha}$-terpinolene, limonene, ${\alpha}$-pinene, and furaneol were the next important compounds.

Purification and Characterization of $\beta$-Galactosidase from Sea Urchin, Hemicentrotus pulcherrimus (성게로부터 분리한 $\beta$-galactosidase의 정제 및 특성)

  • KIM Gyu-Hyung;KIM Yong-Tae;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.637-644
    • /
    • 1998
  • [ $\beta$ ]-Galactosidase was extracted from the internal organ of sea urchin, Hemicentrotus pulcherrimus The enzyme was purified 384.6-fold over the crude extract by the sequential chromatographic methods including DEAE-Sephadex A-25, CM-Cellulose, and Con A-Sepharose 4B affinity chromatography with a recovery $1.26\%$. The molecular weight of the purified enzyme was estimated approximately 94 kDa as monomeric term by SDS-PAGE and Sephadex G-150 gel chromatography. The maximum enzymatic activity was observed at pH 3.0 and $50^{\circ}C$ but the one was stable over the ph range or 3.0$\~$5.0 and below $37^{\circ}C$. The $K_m$ and $V_{max}$ values against PNPG (P-nitrophenyl $\beta$-D-galactopyranoside) were 15.0 mM and 214 $\mu$mole/min per mg protein, respectively. The enzymatic activity was activated by $Ba^{2+}$, but significantly inhibited by $DEP,\;Hg^{2+},\;Sn^{2+}$ and galactose.

  • PDF

Hydrolysis of ${\beta}-glycosidic$ Bonds of Isoflavone Conjugates in the Lactic Acid Fermentation of Soy Milk (대두 요구르트 제조에서 이소플라본 배당체의 가수분해)

  • Choi, Yeon-Bae;Woo, Je-Gu;Noh, Wan-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.189-195
    • /
    • 1999
  • Isoflavones of soy milk were mainly present as sugar conjugates such as genistin and daidzin which a glucosyl residue was attached to their aglycones, genistein and daidzein through ${\beta}-glycosidic$ bond, respectively. When soy milk containing sucrose as a sugar source was fermented with lactic acid bacteria, small amount of lactic acid $(0.16{\sim}0.29%)$ was produced but isoflavone conjugates were fully hydrolyzed. Supplementation of glucose or lactose was required for normal lactic acid production and affected the hydrolysis of isoflavone conjugates in some lactic acid bacteria. In the case of Lactobacillus delbrueckii subsp. delbrueckii KCTC 1047, glycosidic bond of isoflavone was fully hydrolyzed regardless of glucose supplementation. But only $25{\sim}40%$ of daidzin and $65{\sim}80%$ of genistin was hydrolyzed when glucose was added into soy milk in the other lactic acid bacteria, Lactobacillus bulgaricus KCTC 3188, Lactobacillus casei KCTC 3109, Lactobacillus delbrueckii subsp lactis KCTC 1058, Lactobacillus lactis KCTC 2181. The hydrolyzing enzyme, ${\beta}-glucosidase$ produced by lactic acid bacteria except Lactobacillus delbrueckii subsp. delbrueckii KCTC 1047 could be considered as inducible in the fermentation of soy milk and its production was decreased when glucose was added.

  • PDF

Preparation of High Purity Galacto-Oligosaccharide and Its Prebiotic Activity In Vitro Evaluation (고순도 Galactooligosaccharide 제조 및 유산균 증식 활성)

  • Hong, Ki Bae;Suh, Hyung Joo;Kim, Jae Hwan;Kwon, Hyuk Kon;Park, Chung;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1026-1032
    • /
    • 2015
  • This study attempted to find an efficient method for the preparation of high-purity galactooligosaccharides (HP-GOS) using ${\beta}$-galactosidase and yeast fermentation. GOS prepared using Lactozym 3000L showed the greatest enhancement in total GOS of the six ${\beta}$-galatosidases tested. GOS alone achieved 51% conversion of initial lactose. GOS production was enhanced by fermentation with commercial yeast (Saccharomyces cerevisiae); its concentration reached 71% after 36h fermentation with 8% yeast. Component sugar analysis with HPLC indicated that HP-GOS fermented with S. cerevisiae showed significantly increased levels of 4'/6'-galactosyllactose and total GOS as well as a significantly decreased glucose level. HP-GOS facilitated the growth of Lactobacillus sp. (L. acidophilus and L. casei) and Bifidobacterium sp. (B. longum and B. bifidum). In sum, high-purity GOS has been successfully produced through both an enzymatic process and yeast fermentation. GOS encourages the growth of bacteria such as Lactobacillus and Bifidobacterium that may be beneficial to human gastrointestinal health.

Carbon Source-Dependent Regulation of the Schizosaccharomyces pombe pbh1 Gene

  • Kim, Su-Jung;Cho, Nam-Chul;Ryu, In-Wang;Kim, Kyung-Hoon;Park, Eun-Hee;Lim, Chang-Jin
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.689-693
    • /
    • 2006
  • Pbh1, from the fission yeast Schizosaccharomyces pombe, is a baculoviral inhibitor of apoptosis (IAP) repeat (BIR) domain-containing protein. Its unique encoding gene was previously found to be regulated by nitric oxide and nitrogen starvation. In the current work, the Pbh1-lacZ fusion gene was used to elucidate the transcriptional regulation of the pbh1 gene under various carbon sources. When fermentable carbon sources, such as glucose (at a low concentration of 0.2 %), sucrose (2.0 %) and lactose (2.0 %), were the sole carbon source, the synthesis of $\beta$-galactosidase from the Pbh1-lacZ fusion gene was reasonably enhanced. However, the induction by these fermentable carbon sources was abolished in the Pap1-negative S. pombe cells, implying that this type of induction of the pbh1 gene is mediated by Pap1. Ethanol (2.0%), a nonfermentable carbon source, was also able to enhance the synthesis of $\beta$-galactosidase from the fusion gene in wild-type cells but not in Pap1-negative cells. The results indicate that the S. pombe pbh1 gene is up-regulated under metabolic oxidative stress in a Pap1-dependent manner.

Studies on the Exo-maltotetraohydrolase of Pseudomonas stutzeri IAM 12097 -Part III. Reaction products and hydrolysis rate on various carbohydrates of Exo-maltotetraohydrolase- (Pseudomonas stutzeri IAM 12097 의 Exo-maltotetraohydrolase에 관한 연구(硏究) -제3보(第三報). 각종기질(各種基質)에 대(對)한 Exo-maltotetraohydrolase의 분해산물(分解産物) 및 분해율(分解率)-)

  • Lee, Mi-Ja;Chung, Man-Jae
    • Applied Biological Chemistry
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1985
  • Exo-maltotetraohydrolase produced by Pseudomonas stutzeri IAM 12097 was characterized with respect to substrate specificity, the reaction products and hydolysis rate on various carbohydrates. Maltopentaose, maltoheptaose, soluble starch, amylose, amylopectin, oyster glycogen and gelatinized starch of corn, potato, glutinous rice, green banana and arrow root were hydolyzed by this enzyme, but ${\alpha},{\beta},{\gamma}-cyclodextin$, sucrose, raffinose, lactose, pullulan, maltose, maltotriose and maltotetraose were not hydrolyzed. Among oligosaccharides, maltohexaose was favorably hydrolyzed by this enzyme and the main reaction product of oligosaccharides and polysaccharides was maltotetraose. Addition of pullulanase to this enzyme increased the hydolysis rate on gelatinized starches. tut it did not on raw starches. Among various starches, corn starch was favorably hydrolyzed by this enzyme, whereas it acted on potato starch, arrow root starch and high amylose corn starch weakly.

  • PDF

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

Effects of Static Magnetic Fields on Phagocytic Activity of Murine Peritoneal Macrophages

  • Eun, Jae-Soon;Ko, Dae-Woong;Jeon, Yong-Keun;Lee, Kyung-A;Park, Hoon;Ma, Tian-Ze;Kim, Min-Gul;Kwak, Yong-Geun
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.152-159
    • /
    • 2006
  • Electro-magnetic fields and static magnetic fields generated from diverse home/environmental sources have been reported that these could make harmful effects on the human health such as suppression of immunity and tumorigenesis. However, the mechanisms for the biologic effects of electro-magnetic fields or static magnetic fields are still remained unclear. In this study, we examined the in vitro effects of static magnetic fields (SMF) on murine peritoneal macrophages. The cells were exposed in vitro to SMF of $150{\sim}250$ or $350{\sim}450$ G in 5% $CO_2$-incubator. The phagocytic activity of murine peritoneal macrophages was inhibited under exposure to SMF. In order to provide a more complete picture of molecular mechanism for the biological effect of SMF, we compared the levels of total proteins from macrophages with or without exposure to SMF using quantitative proteomic analysis. Proteins which were differentially expressed in macrophages exposed to SMF compared with non-exposed macrophages, were identified. Among them, the levels of trypsinogen 16, lactose-binding lectin Mac-2, galactoside-binding lectin, actin-like (Put. ${\beta}-actin$, vimentin) and electron transferring flavoprotein beta polypeptide were enhanced under exposure to SMF. These results suggest that SMF can affect the phagocytic activity of macrophages via diverse mechanisms.

Hydrolysis of Various Substrates by Two Forms of the Purified Glucoamylase from Rhizopus oryzae (Rhizopus oryzae로 부터 정제(精製)한 두가지형의 Glucoamylase의 각종기질(各種基質)의 가수분해(加水分解))

  • Hou, Won-Nyong;Chung, Man-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.398-402
    • /
    • 1984
  • These experiments were conducted to investigate the substrate specificity, the hydrolysis products on the various carbohydrates and the hydrolysis rate on the various raw starches of the two purified glucoamylase produced by Rhizopus oryzae. Both of the glucoamylases hydrolyzed amylose, amylopectin, glycogen, soluble starch, pullulan, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose and maltooctaose, but did not act on ${\alpha}-cyclodextrin$, ${\beta}-cyclodextrin$, raffinose, sucrose and lactose. When the reaction mixture of glucoamylase and polysaccharides were incubated $37^{\circ}C$for 32 hours, glucoamylase I hydrolyzed amylopectin, soluble starch and amyloses completely, but hydrolyzing glycogen up to only about 88%. Glucoamylase II hydrolyzed the previous four polysaccharides up to about 100%. Both of the glucoamylases produced only glucose for various substrates and did not have any ${\alpha}-glucosyl$ transferase activity. Both of the glucoamylases hydrolyzed raw glutinous rice starch almost complety, wheras they acted on raw potato starch, raw green banana starch, raw arrow root starch, raw corn starch, raw yam starch and raw high amylose corn starch weakly. Glucoamylase II hydrolyzed raw starches at the higher rate than glucoamylase I.

  • PDF