• 제목/요약/키워드: $\bar{\partial}$ and $\bar{\partial}$-Neumann operators

검색결과 2건 처리시간 0.017초

THE ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS AND PSEUDOCONVEXITY OF GENERAL ORDER IN KÄHLER MANIFOLDS

  • Saber, Sayed
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1211-1223
    • /
    • 2016
  • Let M be an n-dimensional $K{\ddot{a}}hler$ manifold with positive holomorphic bisectional curvature and let ${\Omega}{\Subset}M$ be a pseudoconvex domain of order $n-q$, $1{\leq}q{\leq}n$, with $C^2$ smooth boundary. Then, we study the (weighted) $\bar{\partial}$-equation with support conditions in ${\Omega}$ and the closed range property of ${\bar{\partial}}$ on ${\Omega}$. Applications to the ${\bar{\partial}}$-closed extensions from the boundary are given. In particular, for q = 1, we prove that there exists a number ${\ell}_0$ > 0 such that the ${\bar{\partial}}$-Neumann problem and the Bergman projection are regular in the Sobolev space $W^{\ell}({\Omega})$ for ${\ell}$ < ${\ell}_0$.

SOLUTION TO ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS IN WEAKLY q-CONVEX DOMAINS

  • Saber, Sayed
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.409-421
    • /
    • 2018
  • Let X be a complex manifold of dimension n $n{\geqslant}2$ and let ${\Omega}{\Subset}X$ be a weakly q-convex domain with smooth boundary. Assume that E is a holomorphic line bundle over X and $E^{{\otimes}m}$ is the m-times tensor product of E for positive integer m. If there exists a strongly plurisubharmonic function on a neighborhood of $b{\Omega}$, then we solve the ${\bar{\partial}}$-problem with support condition in ${\Omega}$ for forms of type (r, s), $s{\geqslant}q$ with values in $E^{{\otimes}m}$. Moreover, the solvability of the ${\bar{\partial}}_b$-problem on boundaries of weakly q-convex domains with smooth boundary in $K{\ddot{a}}hler$ manifolds are given. Furthermore, we shall establish an extension theorem for the ${\bar{\partial}}_b$-closed forms.