• Title/Summary/Keyword: $\alpha$-olefin

Search Result 55, Processing Time 0.025 seconds

Olefinic Thermoplastic Elastomer and Styrenic Thermoplastic Elastomer (올레핀/스티렌 열가소성 탄성체 및 올레핀/$\alpha$-올레핀 열가소성 탄성체)

  • Kim, Dong-Hyun;Kim, Hyun-Joon;Lee, Bum-Jae
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.152-155
    • /
    • 2010
  • Olefinic thermoplastic elastomer and styrenic thermoplastic elastomer have broad hardness range, high flexibility, low density, and excellent recyclability. But, they are limited in applications due to their low elasticity and low operating temperature. To overcome these problems, olefin/styrene or olefin/$\alpha$-olefin copolymers have been developed. In this review, we described some examples of olefin/styrene or olefin/$\alpha$-olefin copolymer and introduced their properties. Although olefin/styrene or olefin/$\alpha$-olefin copolymer have various weaknesses, they have a great potential in the future.

Effects of the Chain Length of High α-olefins on the Terpolymerization (High α-olefin의 사슬길이가 삼원공중합에 미치는 영향)

  • Kim, Tae-Wan;Lee, Jun Chul;Park, No-Hyung;Kim, Hyun Ki;Cho, Ur-Ryong;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.329-335
    • /
    • 2012
  • In this study, we synthesized poly(ethylene-ter-high ${\alpha}$-olefin-ter-p-methylstyrene) using Zr metallocene catalyst/borate type cocatalyst system. Various effects of the high ${\alpha}$-olefin (1-hexene, 1-octene, 1-decene, and 1-dodecene) were observed. The structure and composition of the terpolymers were characterized using $^{13}C$ NMR and $^1H$ NMR. Catalytic activity, polymer yield, molecular weight and molecular weight distribution were analyzed according to the chain length of high ${\alpha}$-olefin. We determined morphology, crystallinity and thermal properties of the terpolymers.

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

The Compatibilizing Effect of Maleic Anhydride in Ethylene-Vinyl Acetate (EVA)/Ethylene-${\alpha}$-Olefin Copolymers Blends

  • Park, Soo-Chul;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.297-305
    • /
    • 2005
  • The compatibilizing effect of maleic anhydride (MA) in the immiscible blends of EVA22 (vinyl acetate content 22%)/ethylene-${\alpha}$-olefin copolymers with 1-butene (EtBC) and 1-octene (EtOC)) comonomers was studied. By adding 1, 2, and 3 phr of MA in the presence of dicumylperoxide, the morphology, tensile strength at break, and 100 and 300 % modulus of EVA22/EtBC and EVA22/EtOC blends were significantly enhanced. The melting point and crystallization point depression were observed upon the addition of MA. The changes in the ${\beta}$ transition and glass transition temperature of ethylene-${\alpha}$-olefin copolymers and ethylene-vinyl acetate copolymers, respectively, indicate that MA plays a role of compatibilizer for these immiscible blends. The TGA thermograms, measured from the blends with MA, show that thermal stability is slightly enhanced with MA, indicating that MA acts as a reinforcing agent either by grafting or crosslinking with other copolymers.

Changes of Characteristic of Terpolymers according to the Chain Length of Incorporated High α-olefins (도입된 High α-olefin의 사슬길이 변화에 따른 삼원공중합체 특성 변화)

  • Jeon, Dong Gyu;Kim, Tae Wan;Kim, Jung Soo;Kim, Hyun Ki;Chang, Young Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.269-275
    • /
    • 2013
  • In this study, we prepared poly(ethylene-ter-1-hexene-ter-divinylbenzene) using various metallocene catalysts with trityl tetrakis(pentafluorophenyl)borate/triisobutylaluminium cocatalysts system. We tried rac-$Et(Ind)_2ZrCl_2$, rac-$SiMe_2(Ind)_2ZrCl_2$, and rac-$SiMe_2(2-Me-Ind)_2ZrCl_2$ to choose optimum metallocene catalyst, comparing with catalytic activity, molecular weight, molecular weight distribution of the terpolymers. To study the effects of chain length of high ${\alpha}$-olefins on the terpolymerization, we synthesized the terpolymers using 1-hexene, 1-octene, 1-decene or 1-dodecene. We characterized chemical composition, thermal properties, and mechanical properties of the terpolymers.

Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst : III. Effect of ${\alpha}$-Olefin Addition (메탈로센 촉매를 이용한 에틸렌과 시클로올레핀의 공중합 : III. ${\alpha}$-올레핀 첨가의 영향)

  • Lee, Dong-Ho;Lee, Jo-Hoon;Kim, Hyun-Joon;Kim, Woo-Sik;Min, Kyung-Eun;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2001
  • For copolymerization of ethylene and norbornene initiated by various metallocene catalysts such as $rac-Et(Ind)_2ZrCl_2,\;rac-Me_2Si(Ind)_2ZrCl_2,\;rac-Me_2Si(Cp)_2ZrCl_2,\;and\;(n-BuCp)_2ZrCl_2$ with modified methylaluminoxane(MMAO) cocatalyst, the ${\alpha}$-olefins such as 1-hexene(H), 1-octene and 1-decene were added as a 3rd monomer. In this situation, the effects of the polymerization condition, the catalyst structure as well as the structure and the amount of added ${\alpha}$-olefin on the catalyst activity as well as the properties and structure of polymer were examined. As results, it was found that the catalyst activity and thermal property of polymer depended on not only catalyst structure but also ${\alpha}$-olefin structure. For $rac-Et(Ind)_2ZrCl_2/MMAO$ catalyst system, it was possible to get high activity and controllable $T_g$ of polymer. Among ${\alpha}$-olefins, H as a 3rd monomer exhibited the maximum enhancement in catalyst activity.

  • PDF

Polymerization of $\alpha$-Olefin Catalyzed by rac-(EBI) M($NMe_2$)$_2$(M=Zr, Hf)/$AlR_3$/[$Ph_3C$][$B(C_{6}F_{5})$)$_4$] (rac-(EBI) M($NMe_2$)$_2$(M=Zr, Hf)/$AlR_3$/[$Ph_3C$[$B(C_{6}F_{5})$)$_4$ 촉매를 이용한 $\alpha$-올레핀의 중합)

  • Kim, Il;Choi, Chang-Soo;Kim, Ki-Tae
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.646-655
    • /
    • 2000
  • Polymerizations of higher $\alpha$-olefins were carried out in toluene by using highly isospecific catalyst, rac-(EBI)M(NMe$_2$)$_2$ (EBI=1,2-ethylenebis-(1-indenyl); M=Zr(rac-1); M=Hf(rac-2)) In the presence of Al(i-Bu)$_3$/[Ph$_3$C][B($C_{6}F_{5}$)$_4$]. The polymerization of high $\alpha$-olefin showed high activity and similar polymerization behavior. The polymerization activity was affected by both monomer size and lateral size of polymer chain. The conversion of monomer to polymer decreases with the increased lateral size in the order of 1-pentene>1-hexene>1-octene>1-decene. The same dependences of melting behavior and intrinsic viscosity of polyolefin on lateral size were observed according to the results obtained by differential scanning calorimetry and intrinsic viscosity. All poly($\alpha$-olefin)s showed very high isotacticity (triad) and the isotacticity increases in the order of poly(1-pentene)$^1H$ NMR and Raman spectra analysis showed that chain transfer to cocatalyst, which generates saturated methyl groups, Is a main chain termination. The $\beta$-hydride eliminations, which generate unsaturated vinylidene, tri-substituted, and vinylene end group. are found to be minor chain terminations.

  • PDF