• 제목/요약/키워드: $\Delta{6}$-desaturase

검색결과 24건 처리시간 0.031초

Developmental Relationship of Unsaturated Fatty Acid Composition and Stearoyl-CoA Desaturase mRNA Level in Hanwoo Steers' Muscle

  • Lee, Seung-Hwan;Yoon, Du-Hak;Choi, Nag-Jin;Hwang, Soo-Han;Cheong, Eun-Young;Oh, Sung-Jong;Cheong, Il-Cheong;Lee, Chang-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.562-566
    • /
    • 2005
  • This study was conducted to investigate the developmental relationship between fatty acid composition in different lipid fractions and stearoyl-CoA desaturase (SCD) gene expression in steer muscles during growth. Twenty Hanwoo steers were used at 6, 12, 18, 24 and 30 months of age. Fatty acid composition and SCD mRNA level were analyzed. In the total lipid fraction, developmental profiles of C18:1, as the product of SCD enzyme, and SCD mRNA level were significantly increased between 6 months and 12 months of age. During this period, the percentage of C18:1 increased from 31.9% to 49.5% in the total lipid. The increased C18:1 level was maintained until 30 months of age within the range of 44.8- 49.9%. In contrast, the C18:0 composition decreased with age and this decrease was compensated by the increase of the C18:1. However, the sum of C18:0 and C18:1 was changed before and after 12-month old by a 20% increase. Unlike the C18 fatty acids, the C16 fatty acids such as C16:0 and C16:1 did not show a consistent change with age in steers' muscle. On the other hand, C18:2 proportion as a major polyunsaturated fatty acid in muscle was significantly reduced from 21.1% at 6 months of age to 4.4% at 12-months old and then this reduced level was maintained until 30 months within the range of 7.4-11.4%. As in the C18:1 composition during early stages, a 2-fold significant increase was observed in the $\Delta^9$-desaturase index of C18 fatty acid as a measure of SCD activity, but not in that of C16 fatty acid. Also, the steady-state level of SCD mRNA reached a peak at 12 months of age. Thus, the positive relationship between the C18:1 composition and the $\Delta^9$-desaturase (SCD enzyme) index of C18 fatty acid or SCD mRNA level was demonstrated during growth, but the negative relationship between the C18:2 composition and the above three indices was demonstrated at the same time, indicating that the sharp induction of SCD mRNA may be closely related to the dramatic reduction of C18:2, which is known as a suppressor of SCD gene expression during growth.

땅콩에서 고 올레인산 형질관련 분자마커의 선발 (Development of Selectable Marker of High Oleate Trait in Peanut (Arachis hypogaea L.))

  • 양기웅;배석복;박장환;이명희;정찬식;손정희;박금룡
    • 한국육종학회지
    • /
    • 제42권5호
    • /
    • pp.507-514
    • /
    • 2010
  • 땅콩의 delta 12 fatty acid desaturase 유전자의 염기서열에서 고 올레인산을 함유하는 F435를 선발할 수 있는 PCR 기초 분자표지마커를 제작하였다. 본 연구는 포인트 뮤테이션(point mutation)의 결과로 나타나는 고 올레인산을 SNP 마커를 이용하여 하나의 염기서열차이(아데닌 삽입)를 이용하여 판별할 수 있는 분자마커이다. 제작한 마커가 고 올레인산 관련 특이 마커인지 확인하기 위하여, 일반 땅콩 9 품종과 F435를 PCR 후 아가로스 겔 상에서 확인하여 고 올레인산 특이 분자마커임을 확인하였고, 조평 ${\times}$ F435의 $F_2$ 교배조합 41 계통을 이용하여 분리양상을 확인하였다. 그 결과 지방산 분석을 하지 않고도 고 올레인산 함유 계통을 손쉽게 선발할수 있었다. 특히, 헤테로 형질을 나타내는 계통도 선발 가능하였다. 분자마커의 결과가 지방산 수준에서 일치하는지 확인하기 위해 NIR 및 가스크로마토그래피 분석결과를 알아보았데 고 올레인산 관련 분자표지마커가 NIR 및 가스크로마토그래피 분석결과와 일치하였다. 고 올레인산 땅콩의 유전적 차이를 이용하여 분자표지마커를 개발 함으로서 고 올레인산 땅콩의 정확한 선발과 품종을 개발하는데 있어서 세대단축의 효과를 가져올 것이다.

생리활성지방산;그 대사와 기능 (Physiologically Active Fatty Acids their Metabolism and Function)

  • 녹산광
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

Identification of a Potential Gene for Elevation ω-3 Concentration and its Efficiency for Improving ω-6/ω-3 Ratio in Soybean

  • Hyun Jo;Jeong-Dong Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.24-24
    • /
    • 2022
  • This present study was to identify a novel candidate gene that contribute to the elevated α-linolenic acid (ALA, ω-3) concentration in PE2166 from mutagenesis of Pungsannamul. Major loci qALA5_1 and qALA5_2 were detected on chromosome 5 of soybean through quantitative trait loci mapping analyses of recombinant inbred lines. With next generation sequencing of parental lines and Pungsannamul, and recombinant analyses, a potential gene, Glyma. 05g221500 (HD) controlling elevated ALA concentration was identified. HD is a homeodomain-like transcriptional regulator that may regulate the expression level of microsomal ω-3 fatty acid desaturase (FAD3) genes responsible for the conversion of linoleic acid into ALA in the fatty acid biosynthetic pathway. In addition, we hypothesized that combination of mutant alleles, HD and either of microsomal delta-12 fatty acid desaturase 2-1 (FAD2-1\ could reduce the ω-6/ω-3 ratio. In populations where HD, and FAD2-1A and FAD2-1B genes were segregated, combination of a hd allele from PE2166 and either of the variant FAD2-1 alleles were sufficient to reduce the ω-6/ω-3 ratio in seeds.

  • PDF

Molecular Strategy for Development of Value-Added Sesame Variety

  • Chung, Chung-Han
    • 동아시아식생활학회:학술대회논문집
    • /
    • 동아시아식생활학회 2004년도 참깨과학 국제학술대회 발표 논문집
    • /
    • pp.13-30
    • /
    • 2004
  • There are two groups of significant functional constituents in sesame seeds on the whole; one is the vegetable oils and another is the anti-oxidative compounds. However, although high amounts of major fatty acids are synthesized in sesame seeds, their composition is unfavorable because the contents of alpha- and gamma-linolenic acid, the essential fatty acids, are very low or do not produced in sesame seeds. So, to increase these fatty acids in sesame seeds, one strategy is to overexpress their genes, ${\omega}$-3 fatty acid desaturase for alpha-linolenic acid and delta-6 fatty acid desaturase for gamma-linolenid acid, in them. Another molecular target is to enhance alpha-tocopherol, vitamin E, because its content is very low in sesame seeds. The enzyme, gamma-tocopherol methyltransferase, catalyzes the conversion of gamma-tocophero to alpha-tocopherol. Overexpression of this enzyme in sesame seeds could be also a good molecular breeding target. Reduction of phytic acid is also another molecular target in sesame seeds because phosphorus pollution may be caused by its high content in sesame seeds. Accordingly, to do so, one of target enzymes could be myo-inositol 1-phosphate synthase which is a key regulatory enzyme in the pathway of phytic aicd biosyntheses. In this lecture, a molecular strategy for development of value-added sesame crop is described in association with some results of our experiments involved in the molecular characterizations of the genes mentioned above.

  • PDF

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

Alpha-Linolenic Acid: It Contribute Regulation of Fertilization Capacity and Subsequent Development by Promoting of Cumulus Expansion during Maturation

  • Lee, Ji-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권4호
    • /
    • pp.297-307
    • /
    • 2018
  • The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on cumulus expansion, nuclear maturation, fertilization capacity and subsequent development in porcine oocytes. The oocytes were incubated with 0, 25, 50, and $100{\mu}M$ ALA. Cumulus expansion was measured at 22 h, and gene expresison and nuclear maturation were analyzed at 44 h after maturation. Then, mature oocytes with ALA were inseminated, and fertilization parameters and embryo development were evaluated. In results, both of cumulus expansion and nuclear maturation were increased in $50{\mu}M$ ALA groups compared to control groups (p<0.05). However, expression of gap junction protein alpha 1 (GJA1, cumulus expansion-related gene), delta-6 desaturase (FADS1, fatty acid metabolism-related gene), and delta-5 desaturase (FADS2) mRNA in cumulus cells were reduced by $50{\mu}M$ ALA treatment (p<0.05). Cleavage rate was enhanced in 25 and $50{\mu}M$ ALA groups (p<0.05), especially, treatment of $50{\mu}M$ ALA promoted early embryo develop to 4 and 8 cell stages (p<0.05). However, blastocyst formation and number of cells in blastocyst were not differ in 25 and $50{\mu}M$ ALA groups. Our findings show that ALA treatment during maturation could improve nuclear maturation, fertilization, and early embryo development through enhancing of cumulus expansion, however, fatty acid metabolism- and cumulus expansion-related genes were down-regulated. Therefore, addition of ALA during IVM of oocytes could improve fertilization and developmental competence, and further studies regarding with the mechanism of ALA metabolism are needed.

Fatty acid composition of goose meat depending on genotype and sex

  • Uhlirova, Linda;Tumova, Eva;Chodova, Darina;Volek, Zdenek;Machander, Vlastislav
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.137-143
    • /
    • 2019
  • Objective: The aim of this study was to compare male and female geese of two contrasting genotypes in terms of fatty acid composition, indexes related to human health, lipid metabolism and oxidative stability of the meat. Methods: The experiment was carried out on total of 120 geese of two different genotypes; the native breed Czech goose (CG) and commercial hybrid Novohradska goose (NG). One-d-old goslings were divided into 4 groups according to genotype and sex, and 8 birds from each group were slaughtered at 8 weeks of age. Results: The effects of the interactions between genotype and sex were observed on growth performance and carcass traits. Final body weight (p<0.001), daily weight gain (p<0.001), daily feed intake (p<0.001), slaughter weight (p<0.001), and cold carcass weight (p<0.001) were highest in NG males and lowest in CG females. The meat fatty acid composition results showed effects of both genotype and sex on the total n-6 and the total polyunsaturated fatty acid (PUFA) content, as well as the PUFA n-6/PUFA n-3 ratio. Regarding genotype, the total n-6, the total PUFA content and the PUFA n-6/PUFA n-3 ratio were higher in CG, and higher values were found in females. In terms of the lipid metabolism, ${\Delta}^5-{\Delta}^6$ desaturase (p = 0.006) was higher in males. The meat oxidative stability results revealed an interaction between genotype, sex and storage time (p<0.001). The highest (13.85 mg/kg) malondialdehyde content was measured in the meat of CG females after 5 days of storage and was presumably related to a higher PUFA content. Conclusion: NG had a relatively higher growth rate and meat oxidative stability, whereas the advantage of CG meat is its favourable fatty acid profile characterized by a higher PUFA content.

Sexually Matured Female Mice showed Higher γ-Linolenic Acid (GLA) in the Muscle Tissue

  • Park, Chang Seok;Cho, Sang-Rae;Park, Young Sik
    • 한국수정란이식학회지
    • /
    • 제30권2호
    • /
    • pp.83-89
    • /
    • 2015
  • The sexual maturation occurred by the changes of steroid hormones was known to sex-dependently and/or age-dependently regulate the lipid metabolism in various animal species. Our current study demonstrates that lipid and its functional fatty acids can be changed depending on the status of sexual maturation. Of the functional fatty acids, ${\gamma}$-linolenic acid (GLA; 18:3n-6) is an important factor for maintaining human health. The purpose of our study was to investigate the level of GLA in mice with different stages of sexual maturation. To this end, the longissimus muscle (LM) of immature (3-week-old) and mature (7-week-old) female mice was analysed for the fatty acid composition by gas chromatography. Furthermore, both gene and protein level of ${\Delta}6$ desaturase (FADS2) which is involved in GLA metabolism by real time PCR and Western blotting, respectively. Mature females showed greater (P<0.05) serum $17{\beta}$-estradiol (E2) level and LM GLA contents than immature group. The mRNA and protein levels of FADS2, which converts precursor linoleic acid into GLA, were higher (P<0.05) in mature female mice than in immature mice. In conclusion, these results show that sexual maturation of female mice induces GLA and FADS2 contents in LM.

Sexual Maturation May Affect the Levels of n-6 PUFA in Muscle Tissues of Male Mice

  • Park, Chang Seok;Choi, Inho;Park, Young Sik
    • Journal of Animal Science and Technology
    • /
    • 제55권2호
    • /
    • pp.147-153
    • /
    • 2013
  • Lipid metabolism in mature male mice may be different from immature male mice, but the relationship of lipid metabolism, especially n-6 fatty acid metabolism, and sexual maturation is not clearly established. This study was carried out to elucidate whether sexual maturation may affect the metabolism of functional n-6 fatty acids of lipid components by investigating the composition of fatty acids in the longissimus muscle tissues of mature and immature male mice with GC and analyzing the expression of genes and proteins for synthesis of n-6 fatty acids with real-time PCR and western blotting, respectively. Mature male mice showed significantly higher testosterone level in the sera. Similarly, n-6 fatty acids, levels of linoleic acid (LA 18:2n-6) and total n-6 PUFA (Polyunsaturated fatty acids) were increased, but the levels of ${\gamma}$-linolenic acid (GLA; 18:3n-6), dihomo-${\gamma}$-linolenic acid (DGLA; 20:3n-6) and arachidonic acid (AA; 20:4 n-6) were decreased in the mature male mice. mRNA levels of ${\Delta}5$-desaturase (FASD1) and elongase (ELOVL5) genes related to n-6 fatty acid metabolism increased. However, the level of FADS1 protein only increased in mature male mice. In conclusion, this study suggested that sexual maturation of male mice affected n-6 fatty acid metabolism by stimulating the expression of enzyme FADS1 of n-6 PUFA metabolism.