Browse > Article
http://dx.doi.org/10.7318/KJFC/2021.36.5.522

Antioxidant and Antidiabetic Activities of Extracts from Quercus serrata Thunb and Q. acutissima Carruther  

Chu, Ji-Hye (Department of Food Service Management and Nutrition, Kongju National University)
Choi, Jin-Hee (Department of Food Service Management and Nutrition, Kongju National University)
Publication Information
Journal of the Korean Society of Food Culture / v.36, no.5, 2021 , pp. 522-529 More about this Journal
Abstract
This study was conducted to analyze the antioxidant and antidiabetic activities of acorns according to the types of Quercus serrata Thunb (QST) and Q. acutissima Carruther (QAC). The total polyphenol contents of the extracts from QST and QAC were 220.59 and 320.96 mg GAE/g, respectively. The content of total polyphenol of QAC was higher than that of QAC (p<0.001). DPPH (2,2 Diphenyl 1 picrylhydrazyl) radical scavenging activity, reducing power and superoxide dismutase (SOD)-like activity were increased in a concentration-dependent manner by both acorn extracts, and QAC showed high activity in all antioxidant experiments (p<0.05). The inhibitory activities of α-glucosidase and α-amylase were also increased in a concentration-dependent manner, and QAC showed higher inhibitory activity than QST (p<0.05). Our study indicates that QST and QAC are functional food materials with high antioxidant and antidiabetic activities. In addition, QAC has a higher physiological activity than QST.
Keywords
Acorns; antioxidant activity; antidiabetic activity; quercus serrata thunb; quercus acutissima carruther;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee YL, Huang GW, Liang ZC, Mau JL. 2007. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT - Food Sci. Technol., 40(5):823-833   DOI
2 Takahama U, Hirota S. 2018. Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct., 9(2):677-687   DOI
3 Sekowski S, Veiko A, Olchowik-Grabarek E, Dubis A, Wilczewska AZ, Markiewicz KH, Zavodnik IB, Lapshina E, Dobrzynska I, Abdulladjanova N. 2021. Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical-Experimental studies and quantum chemical analysis. Biochim. Biophys. Acta - Biomembr., 1864(1):183778
4 Sin DH, Jo JS. 1991. Antioxidative activity of various solvent extracts of quercisemen to linoleic Acid. J. Korean Appl. Sci. Technol., 8(1):79-83
5 Teng H, Chen L. 2017. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr., 57(16):3438-3448   DOI
6 Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617):1199-1200   DOI
7 Delgado T, Malheiro R, Pereira JA, Ramalhosa E. 2010. Hazelnut (Corylus Avellana L.) Kernels as a source of antioxidants and their potential in relation to other nuts. Ind. Crops Prod., 32(3):621-626   DOI
8 Je HJ, Shin KO. 2016. A review of the general characteristics and functions of acorns. Korean J. Food Nutr., 29(1):58-64   DOI
9 Joo SY, Kim O, Jeon H, Choi H. 2013. Antioxidant activity and quality characteristics of cookies prepared with acorn (Quercus species) powder. Korean J. Food Cook. Sci., 29(2):177-184   DOI
10 Salimifar M, Fatehi-Hassanabad Z, Fatehi M. 2013. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr. Diabetes Rev., 9(5):402-411   DOI
11 Shim T, Jin Y, Sa J, Shin I, Heo S, Wang M. 2004. Studies for component analysis and antioxidative evaluation in acorn powders. Korean J. Food Sci. Technol., 36(5):800-803
12 Korea Centers for Disease Control and Prevention. 2019. 2018 National health and nutrition survey. Cheongju, Korea centers for Disease control and Prevention. 1358
13 Kim MJ, Park EJ. 2011. Feature analysis of different In vitro antioxidant capacity assays and their application to fruit and vegetable samples. J. Korean Soc. Food Sci. Nutr., 40(7):1053-1062   DOI
14 Kim SM, Kim EJ, Cho YS, Sung SK. 1999. Antioxidants of pine needle extracts according to preparation method. Korean J. Food Sci. Technol., 31(2):527-534
15 Kim SM, Park JH, Boo HO, Song SG, Park HY. 2017. In vitro comparision of biological activities of solvent fraction extracts from Orostachys japonicus. Korean J. Plant Res., 30(2):133-143   DOI
16 Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44(1):276-287   DOI
17 Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. 2008. α-glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb pakhanbhed (Bergenia Ciliata, Haw.). Food Chem., 106(1):247-252   DOI
18 Ishartati E, Roeswitawati D, Rohman S. 2021. α-Glucosidase and α-amylase inhibitory activities of jambolan (Syzygium Cumini (L.) SKEELS) fruit and seed. Atlantis Press, 14:256-260
19 Dehghan H, Salehi P, Amiri MS. 2018. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod., 117:303-309   DOI
20 Hong JH. 2021. Diabetes and vitamin D. J. Korean Diabetes, 22(1):6-11   DOI
21 La Anh H, Xuan TD, Thuy D, Thi N, Quan NV, Trang LT. 2020. Antioxidant and α-amylase inhibitory activities and phytocompounds of Clausena Indica fruits. Medicines, 7(3):10   DOI
22 Lee DJ, Lee JY. 2004. Antioxidant activity by DPPH assay. Korean J. Crop Sci., 49(spc1):187-194
23 Lee EH, Hong SH, Cho YJ. 2017. Biological activities of extracts from okkwang (Castanea Crenata) chestnut bur. J. Korean Soc. Food Sci. Nutr., 46(5):572-580   DOI
24 Wu M, Yang Q, Wu Y, Ouyang J. 2021. Inhibitory effects of acorn (Quercus Variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Biosci., 43:101224   DOI
25 Custodio L, Patarra J, Albericio F, da Rosa Neng N, Nogueira JMF, Romano A. 2015. Phenolic composition, antioxidant potential and in Vitro inhibitory activity of leaves and acorns of Quercus Suber on key enzymes relevant for hyperglycemia and Alzheimer's disease. Ind. Crops Prod., 64:45-51   DOI
26 Kim OS, Ryu HS, Choi HY. 2012. Antioxidant activity and quality characteristics of acorn (Quercus Autissima Carruther) cookies. J. Korean Soc. Food Cult., 27(2):225-232   DOI
27 Yim M, Hong T, Lee J. 2006. Antioxidant and antimicrobial activities of fermentation and ethanol extracts of pine needles (Pinus densiflora). Food Sci. Biotechnol., 15(4):582-588
28 Shin DH, Cho JS, Jung ST. 1993. Study on Antioxidant effects of acorn (Quercus Acutissima Carruthers) components; I. the separation and identification of tannin components from acorn. J. Korean Appl. Sci. Technol., 10(1):93-101
29 Swain T, Hillis WE. 1959. The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10(1):63-68   DOI
30 Yang S, Youn K, No H, Lee S, Hong J. 2011. Optimization of extraction conditions for mate (Ilex paraguarensis) ethanolic extracts. Korean J. Food Preserv., 18(3):319-327   DOI
31 Yoon CW. 2016. Trees and shrubs in Yesan Campus, Kongju National University: 700 Kinds of Trees that Recognize Afforestation, Ecology, and use Together. Geobook, Seoul, korea, pp 184-200
32 Zhu Y, Yin L, Cheng Y, Yamaki K, Mori Y, Su Y, Li L. 2008. Effects of sources of carbon and nitrogen on production of α-Glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. J. Food Chem., 109(4):737-742   DOI
33 Kang J, Kang M, Shin J, Park J, Kim D, Chung S, Shin J. 2017. Antioxidant and antidiabetic activities of various solvent extracts from Stachys sieboldii Miq. Korean J. Food Preserv., 24(5):615-622   DOI
34 Lopes GKB, Schulman HM, Hermes-Lima M. 1999. Polyphenol tannic acid inhibits hydroxyl radical formation from fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta - Gen. Subj., 1472(1-2):142-152   DOI
35 Ji YJ, Lee EY, Lee JY, Lee YJ, Lee SE, Seo KH, Kim HD. 2020. Antioxidant and anti-diabetic effects of Agastache rugosa extract. J. East. Asian Soc. Diet. Life, 30:297-305   DOI
36 Joo SY. 2013. Antioxidant activity and quality characteristics of chestnut cookies. J. Korean Soc. Food Cult., 28(1):70-77   DOI
37 Kim JY, Kim SY, Kwon HM, Kim CH, Lee SJ, Park SC, Kim KH. 2014. Comparison of antioxidant and anti-inflammatory activity on chestnut, chestnut shell and leaves of Castanea crenata extracts. Korean J. Medicinal Crop Sci., 22(1):8-16   DOI
38 Lee HW. 2008. DPP-4 Inhibitors and the relations between rosiglitazone and the risk of myocardial infarction. J. Korean Med. Assoc., 51(4):371-376   DOI
39 Oliveira VB, Araujo RL, Eidenberger T, Brandao MG. 2018. Chemical composition and inhibitory activities on dipeptidyl peptidase IV and pancreatic lipase of two underutilized species from the Brazilian Savannah: Oxalis cordata A. St.-Hil. and Xylopia aromatica (Lam.) Mart. Food Res. Int., 105:989-995   DOI
40 Rakic S, Povrenovic D, Tesevic V, Simic M, Maletic R. 2006. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng., 74(3):416-423   DOI
41 Peng Y, Ye J, Kong J. 2005. Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem., 53(21):8141-8147   DOI
42 Lee JH, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J. Food Sci. Technol., 26(3):317-323
43 Lee YM. 1995. We really need to know our one hundred kinds of trees. Hyeonamsa, Seoul, Korean, 394-398
44 Baron AD. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract., 40:S51-S55   DOI
45 Laybutt DR, Kaneto H, Hasenkamp W, Grey S, Jonas J, Sgroi DC, Groff A, Ferran C, Bonner-Weir S, Sharma A. 2002. Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to β-cell survival during chronic hyperglycemia. Diabetes, 51(2):413-423   DOI
46 Lee YR. 2020. Antioxidant and α-amylase inhibitory activity of 70% ethanolic extract from Morinda citrifolia L.(Noni). Korean J. Food & Nutr., 33(2):210-214.   DOI
47 Oyaizu M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Japan. J. Nutr. diet., 44(6):307-315   DOI