Browse > Article
http://dx.doi.org/10.3746/jkfn.2017.46.9.1053

Anti-Inflammatory and Anti-Oxidative Effect of Pinus koraiensis Cone Shell Extracts  

Jin, Joong Hyun (Department of Gerontology, Kyung Hee University)
Kwon, Han Ol (Department of Medical Nutrition, Kyung Hee University)
Ha, Yejin (Department of Medical Nutrition, Kyung Hee University)
Heo, Seok Hyun (Korea Health Supplements Association)
Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.46, no.9, 2017 , pp. 1053-1060 More about this Journal
Abstract
The present study examined the anti-inflammatory and anti-oxidative effects of Pinus koraiensis (PK) cone shell extracts in vitro. Anti-inflammatory and anti-oxidative effects of PK cone shell extracted with hot water, 20% ethanol (EtOH), or 50% EtOH were examined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activites, as well as nitric oxide (NO) and anti-inflammatory cytokine measurements. The 20% EtOH extract of the PK cone shell decreased the NO and inflammatory cytokines secretion, and increased the ABTS radical scavenging, SOD, CAT, and GPx activities. This indicates that the 20% EtOH extract of the PK cone shell would be helpful in inflammation and oxidation systems. Therefore, the 20% EtOH extract of PK cone shell has great potential as a useful health food.
Keywords
ABTS radical scavenging; oxidant enzyme; nitric oxide; anti-inflammatory cytokines;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yu A, Park HY, Kim YS, Ha SK, Hong HD, Choi HD. 2012. Immuno-enhancing effect of seed extracts on a RAW 264.7 macrophage cell line. J Korean Soc Food Sci Nutr 41: 1671-1676.   DOI
2 Lee JH, Yang HY, Lee HS, Hong SK. 2008. Chemical composition and antimicrobial activity of essential oil form cones of Pinus koraiensis. J Microbiol Biotechnol 18: 497-502.
3 Su XY, Wang ZY, Liu JR. 2009. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compouds. Food Chem 117: 681-686.   DOI
4 Karas D, Ulrichova J, Valentova K. 2017. Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 105: 223-240.   DOI
5 Van den Berg R, Haenen GRMM, Van den Berg H, Bast A. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66: 511-517.   DOI
6 Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM. 1986. The antioxidant role of vitamin C. Free Radic Biol Med 2: 419-444.   DOI
7 Dufresne CJ, Farnworth ER. 2001. A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12: 404-421.   DOI
8 Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.   DOI
9 Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126.
10 Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.
11 Curran RD, Billiar TR, Stuehr DJ, Hofmann K, Simmons RL. 1989. Hepatocytes produce nitrogen oxides from L-arginine in response to inflammatory products of Kupffer cells. J Exp Med 170: 1769-1774.   DOI
12 Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-48.   DOI
13 Halliwell B, Gutteridge J. 1999. Free radical in biology and medicine. Oxford University Press Co., New York, NY, USA. p 968.
14 Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 144: 1752-1761.
15 Halliwell B. 1996. Antioxidants in human health and disease. Annu Rev Nutr 16: 33-50.   DOI
16 Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergisti cally as the major cytolytic mechanisms of activated macrophages. J Immunol 144: 1425-1431.
17 Ioannidis I, de Groot H. 1993. Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: Evidence for co-operative action with hydrogen peroxide. Biochem J 296: 341-345.   DOI
18 Curran RD, Billiar TR, Stuehr DJ, Ochoa JB, Harbrecht BG, Flint SG, Simmons RL. 1990. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg 212: 462-471.   DOI
19 Del Toro-Arreola S, Flores-Torales E, Torres-Lozano C, Del Toro-Arreola A, Tostado-Pelayo K, Guadalupe Ramirez-Duenas M, Daneri-Navarro A. 2005. Effect of D-limonene on immune response in BALB/c mice with lymphoma. Int Immunopharmacol 5: 829-838.   DOI
20 Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M, Lundberg JO, Hellstrom PM. 2006. Rectal nitric oxide as biomarker in the treatment of inflammatory bowel disease: responders versus nonresponders. World J Gastroenterol 12: 3368-3392.   DOI
21 Jung SH, Kim SJ, Jun BG, Lee KT, Hong SP, Oh MS, Jang DS, Choi JH. 2013. ${\alpha}$-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NF${\kappa}B$ signalling in RAW 264.7 cells. J Ethnopharmacol 147: 208-214.   DOI
22 Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219-246.   DOI
23 Hotamisligil GS. 2006. Inflammation and metabolic disorders. Nature 444: 860-867.   DOI
24 Valledor AF, Comalada M, Santamaria-Babi LF, Lloberas J, Celada A. 2010. Macrophage proinflammatory activation and deactivation: A question of balance. Adv Immunol 108: 1-20.
25 Hibbs JB Jr, Vavrin Z, Taintor RR. 1987. L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138: 550-565.