Browse > Article
http://dx.doi.org/10.3746/jkfn.2012.41.12.1649

Antioxidant and Anti-Proliferative Activities of Rubus Fruits in Korea  

Jung, Hana (Dept. of Food and Nutrition and Research Institute of Human Ecology, Seoul National University)
Lee, Hee Jae (Dept. of Food and Nutrition and Research Institute of Human Ecology, Seoul National University)
Cho, Hyunnho (Dept. of Food and Nutrition and Research Institute of Human Ecology, Seoul National University)
Hwang, Keum Taek (Dept. of Food and Nutrition and Research Institute of Human Ecology, Seoul National University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.41, no.12, 2012 , pp. 1649-1655 More about this Journal
Abstract
This study was conducted to determine the polyphenols, flavonoids and antioxidant activity (FRAP) of the extracts (crushed by hand or a homogenizer) of Rubus fruits (blackberry, Korean raspberry, black raspberry, boysenberry and golden raspberry) produced in Korea. In addition, their nitric oxide (NO) scavenging activity in RAW 264.7 cells and anti-proliferative activity in HT-29 and KATO-3 cells were investigated. Polyphenol and flavonoid contents in the Rubus fruits ranged from 0.6 to 8.9 and from 0.1 to 7.9 mg/g fresh fruit, respectively. Black raspberry had the highest polyphenol and flavonoid contents among the Rubus fruits. The homogenized extracts of blackberry, Korean raspberry and golden raspberry fruits showed significantly higher polyphenol and FRAP values than the hand-crushed extracts. FRAP values of the Rubus fruit extracts were significantly correlated with their polyphenol (R=0.995) and flavonoid (R=0.967) contents. The Rubus fruit extracts suppressed the NO secretions in LPS-treated RAW264.7 cells. There were no significant differences between extracts obtained by crushing by hand and those obtained using a homogenizer. Proliferation rates of HT-29 and KATO-3 cancer cells treated with the Rubus fruit extracts at 0.1, 0.25 and 0.5 mg/mL were reduced by 3~32% and 0~57%, respectively. The homogenized extracts of blackberry and Korean raspberry fruits had significantly higher anti-proliferation activity against HT-29 cancer cells than the hand-crushed extracts. However, extraction method did not show any significant difference on proliferation of KATO-3 cancer cells. The NO scavenging activity of the Rubus fruit extracts were significantly correlated with the anti-proliferation activities of the HT-29 (R=0.602) and KATO-3 cells (R=0.498).
Keywords
Rubus; raspberry; polyphenol; antioxidant; anti-proliferation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis Gr. 2007. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem 102: 777-783.   DOI   ScienceOn
2 Sariburun E, Sahin S, Demir C, Turkben C, Uylaser V. 2010. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75: C328-C335.   DOI
3 Dossett M, Lee J, Finn CE. 2010. Variation in anthocyanins and total phenolics of black raspberry populations. J Funct Foods 2: 292-297.   DOI
4 Ono M, Tateishi M, Masuoka C, Kobayashi H, Igoshi K, Komatsu H, Ito Y, Okawa M, Nohara T. 2003. A new triterpene glucosyl ester from the fruit of the blackberry (Rubus allegheniensis). Chem Pharm Bull (Tokyo) 51: 200-202.   DOI
5 Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54: 9329-9339.   DOI   ScienceOn
6 Reyes-Carmona J, Yousef GG, Martinez-Peniche RA, Lila MA. 2005. Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. J Food Sci 70: S497-S503.   DOI
7 Jeong JH, Jung H, Lee SR, Lee HJ, Hwang KT, Kim TY. 2010. Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine. Food Chem 123: 338-344.   DOI   ScienceOn
8 Bowen-Forbes CS, Zhang Y, Nair MG. 2010. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23: 554-560.   DOI   ScienceOn
9 Jun HJ, Wen Q, Lee JH, Jeun J, Lee HJ, Lee KG, Oh SK, Lee SJ. 2012. Effects of Korean black raspberry wines on hepatic cholesterol metabolism and retinal vascular formation in vitro. J Korean Soc Appl Biol Chem 55: 249-257.   과학기술학회마을   DOI
10 Lee BK, Shin HH, Jung JH, Hwang KT, Lee YS, Kim TY. 2009. Anthocyanins, polyphenols and antioxidant activities of black raspberry exudates. J Korean Soc Food Sci Nutr 38: 125-130.   과학기술학회마을   DOI   ScienceOn
11 Juranic Z, Zizak Z, Tasic S, Petrovic S, Nidzovic S, Leposavic A, Stanojkovic T. 2005. Antiproliferative action of water extracts of seeds or pulp of five different raspberry cultivars. Food Chem 93: 39-45.   DOI
12 Singleton VL, Noble AC. 1976. Wine flavor and phenolic substances. ACS Symposium Series. p 47-70.
13 Huang HP, Chang YC, Wu CH, Huang CN, Wang CJ. 2011. Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem 129: 1703-1709.   DOI
14 Liu M, Li XQ, Weber C, Yee CY, Brown J, Liu RH. 2002. Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 50: 2926-2930.   DOI   ScienceOn
15 Jung J, Son MY, Jung S, Nam P, Sung JS, Lee SJ, Lee KG. 2009. Antioxidant properties of Korean black raspberry wines and their apoptotic effects on cancer cells. J Sci Food Agr 89: 970-977.   DOI
16 Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559.   DOI   ScienceOn
17 Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76.   DOI   ScienceOn
18 Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.   DOI   ScienceOn
19 Izumi S, Ohno N, Yadomae T. 1997. Down-regulation of LPS-induced nitric oxide synthesis of murine macrophages by oral administration of Sho-saiko-to. Drug Dev Res 40: 48-55.   DOI
20 Gansch H, Weber CA, Lee CY. 2009. Antioxidant capacity and phenolic phytochemicals in black raspberries. New York Fruit Quarterly 17: 20-23.
21 Van Hoed V, De Clercq N, Echim C, Andjelkovic M, Leber E, Dewettinck K, Verhe R. 2009. Berry seeds: a source of specialty oils with high content of bioactives and nutritional value. J Food Lipids 16: 33-49.   DOI
22 Ozgen M, Reese RN, Tulio AZ Jr, Scheerens JC, Miller AR. 2006. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54: 1151-1157.   DOI   ScienceOn
23 Du G, Li M, Ma F, Liang D. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem 113: 557-562.   DOI   ScienceOn
24 Wang J, Mazza G. 2002. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem 50: 850-857.   DOI