Browse > Article
http://dx.doi.org/10.3746/jkfn.2011.40.7.969

Inhibitory Effect of Ecklonia cava Extracts against Lipase Activity and Stability Effect of Temperature and pH on Their Activity  

Jung, Ji-Yeon (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Kim, Koth-Bong-Woo-Ri (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Lee, Chung-Jo (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Kwak, Ji-Hee (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Kim, Min-Ji (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Kim, Dong-Hyun (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
SunWoo, Chan (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Kim, Tae-Wan (Dept. of Food Science and Biotechnology, Andong National University)
Ahn, Dong-Hyun (Dept. of Food Science and Technology/Institute of Food Science, Pukyong National University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.40, no.7, 2011 , pp. 969-974 More about this Journal
Abstract
This study was performed to investigate the inhibitory activity of Ecklonia cava (EC) against lipase and the stability of this activity under various heat and pH conditions. As a result, EC ethanol extract showed lipase inhibitory activity of 59, 34 and 19% at concentrations of 5, 2.5 and 1 mg/mL, whereas the water extract showed low inhibitory activity at all concentrations compared to that of the ethanol extracts. In a heat and pH stability test, the inhibitory activity of the EC ethanol extract increased with heat treatment at $121^{\circ}C$ for 15 min compared with the control and was stable in the pH range of 2~10. Therefore, the EC ethanol extract could be useful as a natural anti-obesity agent.
Keywords
Ecklonia cava; lipase inhibitor; ethanol extract;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Okuda T, Yoshida T, Hatano T, Hashimoto T, Yamashita A. 1997. Tannins and lipase inhibitors containing the same as active ingredients. US Patent 608,815.
2 Nakai M, Fukui Y, Asami S, Toyoda-ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y. 2005. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 53: 4593-4598.   DOI
3 Davido-Pardo G, Arozarena I, Marin-Arrogo MR. 2011. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur Food Res Technol 232: 211-220.   DOI
4 Khanal RC, Howard LR, Prior RL. 2010. Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Res Int 43: 1464-1469.   DOI
5 Kim SJ, Kweon DH, Lee JH. 2006. Investigation of antioxidative activity and stability of ethanol extracts of licorice root (Glycyrrhzia glabra). Korean J Food Sci Technol 38: 584-588.   과학기술학회마을
6 Lee SJ. 2010. Lipase and $\alpha$-amylase inhibitory activity of Sargassum thunbergii extracts. MS Thesis. Pukyong National University, Busan, Korea. p 30-32.
7 Yoon SY, Lee SY, Kim KBWR, Song EJ, Lee SJ, Lee CJ, Park NB, Jung JY, Kwak JH, Nam KW, Ahn DH. 2010. Antimicrobial activity of the Sargassum fulvellum ethanol extract and the effect of temperature and pH on their activity. Korean J Food Sci Technol 42: 155-159.   과학기술학회마을
8 Lee BM, Kim CJ, Kim CT, Seo JJ, Kim IH. 2009. Concentration of fucoxanthin from Ecklonia cava using supercritical carbon dioxide. J Korean Soc Food Sci Nutr 38: 1452-1456.   과학기술학회마을   DOI
9 Kim TH, Bae JS. 2010. Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food Chem Toxicol 48: 1682-1687.   DOI   ScienceOn
10 Kim YJ, Kim BH, Lee SY, Kim MS, Park CS, Rhee MS, Lee KH, Kim DS. 2006. Screening of medicinal plants for development of functional food ingredients with ani-obesity. J Korean Soc Appl Biol Chem 49: 221-226.   과학기술학회마을
11 Kim KBWR, Jung JY, Lee CJ, Kim DH, Cho JY, Ahn DH. 2011. Lipase inhibitory activity of Ecklonia cava extracts. Food Sci Biotechnol in press.
12 Bitou N, Ninomiya M, Tsujita T, Okuda H. 1999. Screening of lipase inhibitors from marine algae. Lipids 34: 441-445.   DOI
13 Quiros ARB, Frecha-Ferreiro S, Vidal-Perez AM, Lopez-Hernandez J. 2010. Antioxidant compounds in edible brown seaweeds. Eur Food Res Technol 231: 495-498.   DOI
14 Deavile ER, Green RJ, Muller-Harvey I, Willoughby I, Frazier RA. 2007. Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J Agric Sci Food Chem 55: 4554-4561.   DOI
15 Ahn IS, Park KY, Do MS. 2007. Weight control mechanisms and antiobesity functional agents. J Korean Soc Food Sci Nutr 36: 503-513.   과학기술학회마을   DOI
16 Lim CS, Li CY, Kim YM, Lee WY, Rhee HI. 2005. The inhibitory effect of Cornus walteri extract against $\alpha$-amylase. J Korean Soc Appl Biol Chem 48: 103-108.   과학기술학회마을
17 Kim JH, Kin HJ, Park HW, Youn SH, Choi DY, Shin CS. 2007. Development of inhibitors against lipase and a-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett 276: 93-98.   DOI
18 Shin HC, Hwang HJ, Kang KJ, Lee BH. 2006. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch pharm Res 29: 165-171.   과학기술학회마을   DOI
19 Kong CS, Kim JA, Yoon NY, Kim SK. 2009. Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47: 1653-1658.   DOI
20 AOAC. 2000. Official methods of analysis. 17th ed. Association of Official Analytical Chemists, Washington, DC, USA. Vol 3, p 1-25, Vol 31, p 10.
21 Hwang EK, Park CS. 2009. Dietary fiber content of different thallus regions and age in three brown algae: Laminaria japonica, Ecklonia stolonifera and E. cava. Kor J Fish Aquat Sci 42: 360-365.   과학기술학회마을   DOI
22 Kim GD, Kang JH, Byun HS, Kim SB, Park YH, Yoon HD, Kim DS. 1986. Compositions and seasonal variations of free sugars and non-volatile organic acids in brown algae, Ecklonia cava, Sargassum ringgoldianum and Myagrapsis myagroides. Bull Korean Fish Soc 19: 227-233.
23 Val AG, Platas G, Basilio A, Cabello A, Gorrochategui J, Suay I, Vicente F, Portillo M, Rio MH, Reina GG, Pelaez F. 2001. Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary islands Spain). Int Microbiol 4: 35-40.
24 Lee SJ, Song EJ, Lee SY, Kim KBWR, Kim SJ, Yoon SY, Lee CJ, Ahn DH. 2009. Antioxidant activity of leaf, stem and root extracts from Orostachys japonicus and their heat and pH stabilities. J Korean Soc Food Sci Nutr 38: 1571-1579.   과학기술학회마을   DOI
25 Lee SY, Kim JH, Song EJ, Kim KBWR, Hong YK, Lim SM, Ahn DH. 2009. Investigation of antimicrobial activity of brown algae extracts and the thermal and pH effects on their activity. Food Sci Biotechnol 18: 506-512.   과학기술학회마을
26 Fenical W. 1983. Marine plants: A unique and unexplored resource. In Plants: The Potentials for Extracting Protein, Medicines, and Other Useful Chemicals (Workshop Proceedings). DIANE publishing, Washington, DC, USA. p 147-153.
27 Kaliaperumal N. 2003. Products from seaweed. SDMRI Research Publication 3: 33-42.
28 Kim MJ, Song EJ, Lee SY, Kim KBWR, Kim SJ, Lee SJ, Yoon SY, Kim AR, Jeon YJ, Park JG, Choi JI, Lee JW, Byun MW, Ahn DH. 2008. Effects of $\gamma$-irradiation on antioxidant and physicochemical properties of Ishige okamurai extracts. J Korean Soc Food Sci Nutr 37: 1485-1490.   과학기술학회마을   DOI
29 Lee SH, Li Y, Karadeniz F, Kim MM, Kim SK. 2009. $\alpha$-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 89: 1552-1558.   DOI
30 Zhuang C, Itoh H, Mizuno T. 1995. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii ). Biosci Biotech Biochem 59: 563-567.   DOI
31 Yoon NY, Eom TK, Kim MM, Kim SK. 2009. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J Agric Food Chem 57: 4124-4129.   DOI
32 Athukorala Y, Kim KN, Jeon YJ. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44: 1065-1074.   DOI
33 Moreno DA, Llic N, Poulev A, Raskin L. 2006. Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sci 78: 2797-2803.   DOI
34 Tiss A, Lengsfeld H, Carriere F, Verger R. 2009. Inhibition of human pancreatic lipase by tetrahydrolipstatin: further kinetic studies showing its reversibility. J Mol Catal B: Enzymatic 58: 41-47.   DOI
35 Kim DH, Lee EH, Hwang JC, Jeung JH, Kim DH, Cheong JY, Cho SW, Kim YB. 2002. A case of acute cholestatic hepatitis associated with orlistat. Korean J Hepatol 8: 317-320.   과학기술학회마을
36 Moreno DA, Llic N, Poulev A, Brasaemle DL, Fried SK, Raskin L. 2003. Inhibitory effects of grape seed extract on lipases. Nutrition 19: 876-879.   DOI
37 Jang DS, Lee GY, Kim JH, Lee YM, Kim JM, Kim YS, Kim JS. 2008. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch Pharm Res 31: 666-670.   과학기술학회마을   DOI
38 Kimura H, Ogawa S, Jisaka M, Kimura Y, Katsube T, Yokota K. 2003. Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity. J Pharm Biomed Anal 41: 1657-1665.
39 Zheng Q, Koike K, Han LK, Okuda H, Nikaido T. 2004. New biologically active triterpenoid saponins from Scabiosa tschiliensis. J Nat Prod 67: 604-613.   DOI
40 Choi HJ, Kil JH, Bak SS, Kong CS, Park KY, Seo YW, Lim SY. 2006. Inhibitory effects of solvent extracts from seven brown algae on mutagenicity and growth of human cancer cells. J Life Sci 16: 1080-1086.   과학기술학회마을   DOI
41 Kobayashi A, Osaka T, Namba Y, Inoue S, Lee TH, Kimura S. 1998. Capsaicin activates heat loss and heat production simultaneously and independently in rats. Am J Physiol 275: 92-98.
42 Pi-Sunyer FX. 1991. Health implications of obesity. Am Soc Nutr 53: 15955-16035.
43 Chu MA, Choe BH. 2010. Obesity and metabolic syndrome among children and adolescents in Korea. J Korean Med Assoc 53: 142-152.   DOI
44 Mattes RD, Bormann L. 2000. Effects of (-)-hydroxycitric acid on appetitive variables. Physiol Behav 71: 87-94.   DOI   ScienceOn
45 Westerterp-Plantenga MS, Smeets A, Lejeune MPG. 2005. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obesity 29: 682-688.   DOI