Browse > Article
http://dx.doi.org/10.13103/JFHS.2022.37.3.189

Effect of Natural Product Extracts on Inhibition of Macrophage and Basophil  

Park, Jaehyun (School of Medicine.Department of Medicine, Kangwon National University)
Jang, Jimin (School of Medicine.Department of Medicine, Kangwon National University)
Cha, Sang-Ryul (School of Medicine.Department of Medicine, Kangwon National University)
Baek, Hyosin (School of Medicine.Department of Medicine, Kangwon National University)
Lee, Jooyeon (School of Medicine.Department of Medicine, Kangwon National University)
Lee, You-Hui (Cureson Co., Ltd)
Ryu, Semin (School of Medicine.Department of Medicine, Kangwon National University)
Yang, Se-Ran (School of Medicine.Department of Medicine, Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.37, no.3, 2022 , pp. 189-197 More about this Journal
Abstract
Asthma is a chronic inflammatory disease characterized by recurring symptoms, airflow obstruction, and bronchial hyper-responsiveness. The onset of asthma for most patients begins early in life, and current asthma treatment with anti-inflammatory agents can have adverse effects, eventually leading to impaired quality of life. In the pathogenesis of asthma, macrophages and basophils play a vital role during progression. Macrophages not only induce inflammation by secreting inflammatory cytokines but also promote DNA damage and mucus production through nitric oxide (NO) production. Basophils enhance eosinophil recruitment and aggravate asthma through the FcεRIα receptor with high affinity for histamine and IgE. Therefore, in this study, we investigated whether the activation of macrophages and basophils is suppressed by the individual extracts of 28 natural products. RAW 264.7 cells (mouse macrophages) were treated with the natural products in LPS, and 4 natural product extracts resulted in decreased NO production. In β-hexosaminidase assay using RBL-2H3 cells (rat basophils), 19 natural product extracts decreased β-hexosaminidase production. In NO production and β-hexosaminidase assay using macrophages and basophils, 3 natural product extracts (Plantago asiatica, Centella asiatica, and Perilla frutescens var. japonica) significantly inhibited NO production and β-hexosaminidase release. Overall, we examined the inhibitory effects of 28 natural product extracts on macrophage and basophil activity, and the findings demonstrated the potential of natural product extracts for treating asthma and macrophage- and basophil-related diseases.
Keywords
Natural product; Asthma; Nitric Oxide; ${\beta}$-hexosaminidase; Macrophage; Basophil;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 van der Veen, T.A., de Groot, L.E.S., Melgert, B.N., The different faces of the macrophage in asthma. Curr. Opin. Pulm Med., 26, 62-68 (2020).   DOI
2 Tan, R., Liew, M.F., Lim, H.F., Leung, B.P., Wong, W.S.F., Promises and challenges of biologics for severe asthma. Biochem. Pharmacol., 179, 114012 (2020).   DOI
3 Naura, A.S., Zerfaoui, M., Kim, H., Abd Elmageed, Z.Y., Rodriguez, P.C., Hans, C.P., Ju, J., Errami, Y., Park, J., Ochoa, A.C., Boulares, A.H., Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. J. Immunol., 185, 3076-3085 (2010).   DOI
4 Siracusa, M.C., Kim, B.S., Spergel, J.M., Artis, D., Basophils and allergic inflammation. J. Allergy Clin. Immunol., 132, 789-801, quiz 788 (2013).   DOI
5 Brooks, C.R., van Dalen, C.J., Hermans, I.F., Gibson, P.G., Simpson, J.L., Douwes, J., Sputum basophils are increased in eosinophilic asthma compared with non-eosinophilic asthma phenotypes. Allergy, 72, 1583-1586 (2017).   DOI
6 Bak, J.P., Kim, J.B., Park, J.H., Yang, Y.J., Kim, I.S., Choung, E.S., Kang, S.C., Screening and compound isolation from natural plants for anti-allergic activity. J. Kor. Soc. Appl. Biological Chem., 54, 367-375 (2011).   DOI
7 Gao, J., Zhang, Y.N., Cui, J., Zhang, J., Ming, Y., Hao, Z., Xu, H., Cheng, N., Zhang, D., Jin, Y., Lin, D. Lin, J., A Polysaccharide From the Whole Plant of Plantago asiatica L. Enhances the Antitumor Activity of Dendritic Cell-Based Immunotherapy Against Breast Cancer. Front Pharmacol., 12, 678865 (2021).   DOI
8 Yang, Q., Qi, M., Tong, R., Wang, D., Ding, L., Li, Z., Huang, C., Wang, Z., Yang, L., Plantago asiatica L. Seed Extract Improves Lipid Accumulation and Hyperglycemia in High-Fat Diet-Induced Obese Mice. Int. J. Mol. Sci., 18, (2017).
9 Lim, H.J., Woo, K.W., Lee, K.R., Lee, S.K., Kim, H.P., Inhibition of Proinflammatory Cytokine Generation in Lung Inflammation by the Leaves of Perilla frutescens and Its Constituents. Biomol. Ther. (Seoul), 22, 62-67 (2014).   DOI
10 Cho, Y.C., Vuong, H.L., Ha, J., Lee, S., Park, J., Wibow, A.E., Cho, S., Inhibition of Inflammatory Responses by Centella asiatica via Suppression of IRAK1-TAK1 in Mouse Macrophages. Am. J. Chin. Med., 48, 1103-1120 (2020).   DOI
11 Mims, J.W., Asthma: definitions and pathophysiology. Int. Forum Allergy Rhinol., 5 Suppl 1, S2-6 (2015).   DOI
12 Wu, H., Zhao, G., Jiang, K., Chen, X., Zhu, Z., Qiu, C., Li, C., Deng, G., Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-kappaB and MAPK activation. Int. Immunopharmacol., 35, 315-322 (2016).   DOI
13 Bylka, W., Znajdek-Awizen, P., Studzinska-Sroka, E., Danczak-Pazdrowska, A., Brzezinska, M., Centella asiatica in dermatology: an overview. Phytother Res., 28, 1117-1124 (2014).   DOI
14 Bylka, W., Znajdek-Awizen, P., Studzinska-Sroka, E., Brzezinska, M., Centella asiatica in cosmetology. Postepy Dermatol Alergol., 30, 46-49 (2013).
15 Sun, B., Wu, L., Wu, Y., Zhang, C., Qin, L., Hayashi, M., Kudo, M., Gao, M., Liu, T., Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol., 11, 568032 (2020).   DOI
16 Han, A.R., Lee, S., Han, S., Lee, Y.J., Kim, J.B., Seo, E.K., Jung, C.H., Triterpenoids from the Leaves of Centella asiatica Inhibit Ionizing Radiation-Induced Migration and Invasion of Human Lung Cancer Cells. Evid Based Complement Alternat Med., 2020, 3683460 (2020).
17 Wang, X., Cai, X., Wang, W., Jin, Y., Chen, M., Huang, X., Zhu, X., Wang, L., Effect of asiaticoside on endothelial cells in hypoxiainduced pulmonary hypertension. Mol. Med. Rep., 17, 2893-2900 (2018).
18 Lee, J.W., Park, H.A., Kwon, O.K., Jang, Y.G., Kim, J.Y., Choi, B.K., Lee, H.J., Lee, S., Paik, J.H., Oh, S.R., Ahn, K.S., Lee, H.J., Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. Int Immunopharmacol., 39, 208-217 (2016).   DOI
19 Papi, A., Brightling, C., Pedersen, S.E., Reddel, H.K., Asthma. Lancet., 391, 783-800 (2018).   DOI
20 Chung, K.F., Wenzel, S.E., Brozek, J.L., Bush, A., Castro, M., Sterk, P.J., Adcock, I.M., Bateman, E.D., Bel, E.H., Bleecker, E.R., Boulet, L.P., Brightling, C., Chanez, P., Dahlen, S.E., Djukanovic, R., Frey, U., Gaga, M., Gibson, P., Hamid, Q., Jajour, N.N., Mauad, T., Sorkness, R.L., Teague, W.G. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J., 43, 343-373 (2014).   DOI
21 Hyland, M.E., Whalley, B., Jones, R.C., Masoli, M., A qualitative study of the impact of severe asthma and its treatment showing that treatment burden is neglected in existing asthma assessment scales. Qual Life Res., 24, 631-639 (2015).   DOI
22 Lambrecht, B.N., Persson, E.K. Hammad, H., Myeloid Cells in Asthma. Microbiol Spectr., 5, (2017).
23 Lee, J., Park, J.R., Jang, A., Yang, S.R. The Anti-Proliferation and Oxidative Damage-Related Mechanism of L-Carnitine in Human Colorectal Cancer Cells. J. Food Hyg. Saf., 34, 303-308 (2019).   DOI
24 Tomasiak, M.M., Tomasiak, M., Zietkowski, Z., Skiepko, R., Bodzenta-Lukaszyk, A., N-acetyl-beta-hexosaminidase activity in asthma. Int. Arch. Allergy Immunol., 146, 133-137 (2008).   DOI
25 Grant, S.M., Goa, K.L., Fitton, A., Sorkin, E.M., Ketotifen. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs., 40, 412-448 (1990).   DOI
26 Amaral-Machado, L., Oliveira, W.N., Moreira-Oliveira, S.S., Pereira, D.T., Alencar, E.N., Tsapis, N., Egito, E.S.T., Use of Natural Products in Asthma Treatment. Evid Based Complement Alternat Med., 2020, 1021258 (2020).
27 Moreira, A.P., Cavassani, K.A., Hullinger, R., Rosada, R.S., Fong, D.J., Murray, L., Hesson, D.P., Hogaboam, C.M., Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J. Allergy Clin. Immunol., 126, 712-721 e717 (2010).   DOI
28 George, M., Joseph, L., Ramaswamy. Anti-allergic, anti-pruritic, and anti-inflammatory activities of Centella asiatica extracts. Afr. J. Tradit Complement Altern Med., 6, 554-559 (2009).
29 Kwak, Y., Ju, J., Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells. Nutr. Res. Pract, 9, 11-16 (2015).   DOI
30 Chen, M.L., Wu, C.H., Hung, L.S., Lin, B.F., Ethanol Extract of Perilla frutescens Suppresses Allergen-Specific Th2 Responses and Alleviates Airway Inflammation and Hyperreactivity in Ovalbumin-Sensitized Murine Model of Asthma. Evid Based Complement Alternat Med., 2015, 324265 (2015).
31 Yang, H., Sun, W., Fan, Y.N., Li, S.Y., Yuan, J.Q., Zhang, Z.Q., Li, X.Y., Lin, M.B., Hou, Q., Perilla Leaf Extract Attenuates Asthma Airway Inflammation by Blocking the Syk Pathway. Mediators Inflamm., 2021, 6611219 (2021).
32 Fu, Y.S., Lue, S.I., Lin, S.Y., Luo, C.L., Chou, C.C., Weng, C.F., Plantago asiatica Seed Extracts Alleviated Blood Pressure in Phase I(-)Spontaneous Hypertension Rats. Molecules., 24, (2019).
33 Li, F., Huang, D., Nie, S., Xie, M., Polysaccharide from the Seeds of Plantago asiatica L. Protect Against Lipopolysaccharide-Induced Liver Injury. J. Med. Food, 22, 1058-1066 (2019).   DOI