Browse > Article
http://dx.doi.org/10.13103/JFHS.2019.34.6.509

Immunosensors for Food Safety: Current Trends and Future Perspectives  

Daliri, Frank (Department of Agriculture Biotechnology, Kwame Nkrumah University of Science and Technology)
Aboagye, Agnes Achiaa (Root and Tuber Division, Council for Scientific and Industrial Research-Crops Research Institute)
Kyei-Baffour, Vincent (Toxicology Unit, Department of Chemistry, Council for Scientific and Industrial Research- Food Research Institute)
Elahi, Fazle (Department of Food Science and Biotechnology, Kangwon National University)
Chelliah, Ramachandran (Department of Food Science and Biotechnology, Kangwon National University)
Daliri, Eric Banan-Mwine (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.34, no.6, 2019 , pp. 509-518 More about this Journal
Abstract
To monitor the levels of antimicrobials, allergens, pathogens and other contaminants in foods meant for human consumption, it is imperative to have quick, accurate and low-cost tests. Advanced techniques (e.g. label-free biosensor assays) have been developed over the past 10-15 years to solve some of these problems. As biosensors, immunosensors can provide real-time measurements, a high degree of automation, and improved throughput and sensitivity. By comparison with conventional methods, immunosensors are less expensive, less sophisticated physicochemical instruments that require less time for analysis while also being more user-friendly. In this review, we discuss our current knowledge about immunosensors, their strengths and weaknesses, as well as the future of these biosensors in food safety.
Keywords
Biosensors; Detectors; Food pathogens; Food contaminants; Nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, J., Zhao, X., Xu, H., Wang, Z., Dai, Z., Amino acidscapped water-soluble near infrared region CuInS2/ZnS Quantum Dots for selective cadmium ion determination and multicolor cell imaging. Anal. Chem. 91(14), 8987-8993 (2019).   DOI
2 Pissuwan, D., Gazzana, C., Mongkolsuk, S., Cortie, M.B., Single and multiple detections of foodborne pathogens by gold nanoparticle assays. Nanomed Nanobi., e1584 (2019).
3 Al-Hadedee, L.T., Taha, A.A., Al-Mosowy, A.J., Suleiman, A.A., Detection and killing of food poisoning Salmonella typhimurium in cheese by using monoclonal antibody and nanoparticles complex. RRJoFST., 5(1), 1-10 (2018).
4 Kara, V., Duan, C., Gupta, K., Kurosawa, S., Stearns-Kurosawa, D. J., & Ekinci, K. L., Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab on a Chip, 18(5), 743-753 (2018).   DOI
5 Mehrotra, P., Biosensors and their applications-A review. J Oral Biol Craniofac Res., 6(2), 153-159 (2016).   DOI
6 Hashemi Goradel, N., Mirzaei, H., Sahebkar, A., Poursadeghiyan, M., Masoudifar, A., Malekshahi, Z. V., Negahdari, B., Biosensors for the detection of environmental and urban pollutions. J. Cell. Biochem., 119(1), 207-212 (2018)   DOI
7 Li, Z., Chen, G.-Y., Current conjugation methods for immunosensors. Nanomaterials, 8(5), 278 (2018)   DOI
8 Balahura, L.-R., Stefan-Van Staden, R.-I., Van Staden, J. F., Aboul-Enein, H. Y., Advances in immunosensors for clinical applications. J Immunoassay Immunochem., 40(1), 40-51 (2019).   DOI
9 Azam, M.S., Rahman, M.R.T., Lou, Z., Tang, Y., Raqib, S.M., Jothi, J.S., Advancements and application of immunosensors in the analysis of food contaminants. Nus Biosci., 6(2) (2014).   DOI
10 Altunbas, O., Ozdas, A., Yilmaz, M.D., Luminescent detection of Ochratoxin A using terbium chelated mesoporous silica nanoparticles. J Hazard Mater., 382, 121049 (2020).   DOI
11 Pu, Y., Cai, F., Wang, D., Wang, J.-X., Chen, J.-F., Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res., 57(6), 1790-1802 (2018).   DOI
12 Jimenez-Lopez, J., Rodrigues, S., Ribeiro, D., Ortega-Barrales, P., Ruiz-Medina, A., Santos, J., Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochim Acta A Mol Biomol. Spectrosc., 212, 246-254 (2019).   DOI
13 Upadhyay, S., Sharma, M.K., Das, R., Narayanan, J., Application of nanomaterials in biosensing for foodborne pathogens detection. J. Food Bioeng. Nanop., 1(1), 32-55 (2016).
14 Silva, N.F., Almeida, C.M., Magalhaes, J.M., Goncalves, M.P., Freire, C., Delerue-Matos, C., Development of a disposable paper-based potentiometric immunosensor for realtime detection of a foodborne pathogen. Biosens. Bioelectron., 111317 (2019).
15 Li, Q., Lv, S., Lu, M., Lin, Z., & Tang, D., Potentiometric competitive immunoassay for determination of aflatoxin B 1 in food by using antibody-labeled gold nanoparticles. Microchimica Acta, 183(10), 2815-2822. (2016).   DOI
16 Goriushkina, T.B., Soldatkin, A.P., Dzyadevych, S.V., Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J. Agric. Food Chem., 57(15), 6528-6535 (2009).   DOI
17 Pilo, M., Farre, R., Lachowicz, J.I., Masolo, E., Panzanelli, A., Sanna, G., Senes, N., Sobral, A., Spano, N., Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (poly) thiophene films. J. Anal. Methods, 2018, (2018).
18 Contreras-Naranjo, J.E., Aguilar, O., Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors, 9(1), 15 (2019).   DOI
19 Sandford, C., Edwards, M.A., Klunder, K., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., Minteer, S., A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem. Sci., 6404-6422 (2019).
20 Shkotova, L., Goriushkina, T., Tran-Minh, C., Chovelon, J.-M., Soldatkin, A., Dzyadevych, S., Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater. Sci. Eng. C, 28(5-6), 943-948 (2008).   DOI
21 Fogel, R., Limson, J., Seshia, A.A., Acoustic biosensors. Essays Biochem., 60(1), 101-110 (2016).   DOI
22 Khemthongcharoen, N., Wonglumsom, W., Suppat, A., Jaruwongrungsee, K., Tuantranont, A., Promptmas, C., Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens. Bioelectron., 63, 347-353 (2015).   DOI
23 Nallathambi, A., Shanmuganantham, T., A cantilever based MEMS sensor for detection of greenhouse gases. Int. J. Eng. Res, (2), 16-21 (2015).
24 Rotake, D., Darji, A., Heavy metal ion detection in water using MEMS based sensor. Materials Today: Proceedings, 5(1), 1530-1536 (2018).   DOI
25 Ricci, F., Volpe, G., Micheli, L., & Palleschi, G., A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta, 605(2), 111-129 (2007).   DOI
26 Rubab, M., Shahbaz, H.M., Olaimat, A.N., Oh, D.-H., Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens. Bioelectron., 105, 49-57 (2018).   DOI
27 Kumar, V., Kumar, V., Singh, A.K., Verma, N., Bhalla, T.C., A Potentiometric biosensor for cyanide detection using immobilized whole cell cyanide dihydratase of Flavobacterium indicum MTCC 6936. J. Anal. Chem, 73(10), 1014-1019 (2018).   DOI
28 Dutta, S., Padhye, S., Narayanaswamy, R., Persaud, K., An optical biosensor employing tiron-immobilised polypyrrole films for estimating monophenolase activity in apple juice. Biosens. Bioelectron., 16(4-5), 287-294 (2001).   DOI
29 Rotariu, L., Bala, C., Magearu, V., Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Anal. Chim., 458(1), 215-222 (2002).   DOI
30 Kim, M., Kim, M.-J., Isocitrate analysis using a potentiometric biosensor with immobilized enzyme in a FIA system. Food Res Int., 36(3), 223-230 (2003).   DOI
31 Gupta, M., Summuna, B., Gupta, S., Sharma, D., Biosensor based techniques: A reliable and primary tool for detection of foodborne pathogens. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability. Ed(s). El Sheikha A., F., Levin R. E., Xu, J. Willey. USA, 361 (2018).
32 Pohanka, M., Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 11(3), 448 (2018).   DOI
33 Chauhan, R., Solanki, P.R., Singh, J., Mukherjee, I., Basu, T., Malhotra, B., A novel electrochemical piezoelectric label free immunosensor for aflatoxin B1 detection in groundnut. Food Control, 52, 60-70 (2015).   DOI
34 Bao, Y., Xu, P., Cai, S., Yu, H., Li, X., Detection of volatileorganic-compounds (VOCs) in solution using cantileverbased gas sensors. Talanta, 182, 148-155 (2018).   DOI
35 Stepurska, K., Soldatkin, О., Kucherenko, I., Arkhypova, V., Dzyadevych, S., Soldatkin, A., Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Anal. Chim. Acta., 854, 161-168 (2015).   DOI
36 Soldatkin, O.O., Stepurska, K., Arkhypova, V., Soldatkin, A., El'Skaya, A., Lagarde, F., Dzyadevych, S., Conductometric enzyme biosensor for patulin determination. Sens Actuators B Chem., 239, 1010-1015 (2017).   DOI
37 Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S., Craighead, H., Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Letters, 5(5), 925-929 (2005).   DOI
38 Lang, H.P., Hegner, M., Gerber, C., 2017, Nanomechanical cantilever array sensors. In Springer Handbook of Nanotechnology, Springer. Columbus. USA. pp 457-485.
39 Alim, S., Vejayan, J., Yusoff, M.M., Kafi, A., Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens. Bioelectron., 121, 125-136 (2018).   DOI
40 Cheng, N., Song, Y., Zeinhom, M.M., Chang, Y.-C., Sheng, L., Li, H., Du, D., Li, L., Zhu, M.-J., Luo, Y., Nanozymemediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces, 9(46), 40671-40680 (2017).   DOI
41 Lu, Y., Shi, Z., Liu, Q., Smartphone-based biosensors for portable food evaluation. Curr Opin Food Sci., 28, 74-81 (2019).   DOI
42 Campana, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Ruiz Puentes, P., Cruz, J.C., Osma, J.F., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors, 9(1), 41(2019).   DOI
43 Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., Weissleder, R., Lee, H., Integrated magnetochemical sensor for on-site food allergen detection. ACS nano., 11(10), 10062-10069 (2017).   DOI
44 Tomassetti, M., Conta, G., Campanella, L., Favero, G., Sanzo, G., Mazzei, F. and Antiochia, R., A flow SPR immunosensor based on a sandwich direct method. Biosensors, 6(2), 22 (2016).   DOI
45 Makaraviciute, A., Ramanavicius, A. and Ramanaviciene, A., Development of a reusable protein G based SPR immunosensor for direct human growth hormone detection in real samples. Anal. Methods, 7(23), 9875-9884 (2015).   DOI
46 Nirschl, M., Reuter, F., Voros, J., Review of transducer principles for label-free biomolecular interaction analysis. Biosensors., 1(3), 70-92 (2011).   DOI
47 Piro, B., Reisberg, S., Recent advances in electrochemical immunosensors. Sensors, 17(4), 794 (2017).   DOI
48 Dziabowska, K., Czaczyk, E., Nidzworski, D., Application of electrochemical methods in biosensing technologies. In Biosensing technologies for the detection of pathogens-A prospective way for rapid analysis, IntechOpen, (2017).
49 Dudchenko, O.Y., Pyeshkova, V.M., Soldatkin, O.O., Akata, B., Kasap, B.O., Soldatkin, A.P., Dzyadevych, S.V., Development of silicalite/glucose oxidase-based biosensor and its application for glucose determination in juices and nectars. Nanoscale Res. Lett., 11(1), 59 (2016).   DOI
50 Adley, C., Ryan, M., 2015, Conductometric biosensors for high throughput screening of pathogens in food. In high throughput screening for food safety assessment, Elsevier. pp 315-326.
51 Chauhan, R., Singh, J., Solanki, P.R., Basu, T., O'Kennedy, R., Malhotra, B., Electrochemical piezoelectric reusable immunosensor for aflatoxin B1 detection. Biochem. Eng. J, 103, 103-113 (2015).   DOI
52 Wang, L., Xu, L., Kuang, H., Xu, C., Kotov, N.A., Dynamic nanoparticle assemblies. Acc. Chem. Res., 45(11), 1916-1926 (2012).   DOI
53 Gonzalez-Curbelo, M.A., Herrera-Herrera, A.V., Ravelo-Perez, L.M., Hernandez-Borges, J., Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. Trac Trend Anal Chem., 38, 32-51 (2012).   DOI
54 Prasad, P.N., 2004, Introduction to biophotonics. John Wiley & Sons. Hoboken. US.
55 Yun, Y., Pan, M., Wang, L., Li, S., Wang, Y., Gu, Y., Yang, J., Wang, S., Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Anal. Bioanal. Chem, 1-9 (2019).
56 Melo, A.M.A., Alexandre, D.L., Furtado, R.F., Borges, M.F., Figueiredo, E.A.T., Biswas, A., Cheng, H.N., Alves, C.R., Electrochemical immunosensors for Salmonella detection in food. Appl Microbiol Biotechnol, 100(12), 5301-5312 (2016).   DOI
57 Wang, H., Wang, L., Hu, Q., Wang, R., Li, Y., Kidd, M., Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J. Food Prot., 81(8), 1321-1330 (2018).   DOI
58 Radhakrishnan, R., Poltronieri, P., Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors, 7(4) pii: E63 (2017).
59 Yu, X., Chen, F., Wang, R., Li, Y., Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J. Biotechnol., 266, 39-49 (2018).   DOI
60 Wong, Y., Ng, S., Ng, M., Si, S., Yao, S., Fung, Y., Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens. Bioelectron, 17(8), 676-684 (2002).   DOI
61 Karaseva, N., Ermolaeva, T., A piezoelectric immunosensor for chloramphenicol detection in food. Talanta, 93, 44-48 (2012).   DOI
62 Vargas-Bernal, R., Rodriguez-Miranda, E., Herrera-Perez, G., Evolution and expectations of enzymatic biosensors for pesticides In: Pesticides-Advances in Chemical and Botanical Pesticides. InTechOpen., Ed. Soundararajan R.P. United Kingdom (2012).
63 Valadez, A., Lana, C., Tu, S.-I., Morgan, M., Bhunia, A., Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors, 9(7), 5810-5824 (2009).   DOI
64 Tang, M., Wu, Y., Deng, D., Wei, J., Zhang, J., Yang, D., Li, G., Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sensor Actuat B-Chem., 258, 304-312 (2018).   DOI
65 Lopes, R.N., Rodrigues, D.M., Allil, R.C., Werneck, M.M., Plastic optical fiber immunosensor for fast detection of sulfate-reducing bacteria. Measurement, 125, 377-385 (2018).   DOI
66 Long, F., Gao, C., Shi, H., He, M., Zhu, A., Klibanov, A., Gu, A., Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosens. Bioelectron., 26(10), 4018-4023 (2011).   DOI
67 Dubey, R., Upadhyay, S., Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosens. Bioelectron., 16(9-12), 995-1000 (2001).   DOI
68 Ding, J., Lu, Z., Wang, R., Shen, G., Xiao, L., Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for 2, 4-dichlorophenoxyacetic acid quantification. Sensor Actuat B-Chem. 193, 568-573 (2014).   DOI
69 Algar, W.R., Tavares, A.J., Krull, U.J., Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta., 673(1), 1-25 (2010).   DOI
70 Bai, L., Yan, H., Feng, Y., Feng, W., Yuan, L., Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: Synthesis, emission mechanism, $Fe^{3+}$ probe and cell imaging. Chem Eng J., 373, 963-972 (2019).   DOI
71 Vashist, S.K., A review of microcantilevers for sensing applications. J. of Nanotechnology, 3, 1-18 (2007).
72 Flores-Perez, R., Gupta, A.K., Bashir, R., Ivanisevic, A., Cantilever-based sensor for the detection of different chromophore isomers. Anal. Chem., 79(12), 4702-4708 (2007).   DOI
73 Wu, W.-H., Zhu, K.-D., Proposition of a silica nanoparticleenhanced hybrid spin-microcantilever sensor using nonlinear optics for detection of DNA in liquid. Sensors, 15(10), 24848-24861 (2015).   DOI
74 Gandhi, M., Chu, S., Senthilnathan, K., Babu, P.R., Nakkeeran, K., Li, Q., Recent advances in plasmonic sensorbased fiber optic probes for biological applications. Applied Sciences, 9(5), 949 (2019).   DOI
75 Banica, F.G., 2012 Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons. United Kingdom.
76 Carrillo-Carrion, C., Simonet, B.M., Valcarcel, M., Rapid fluorescence determination of diquat herbicide in food grains using quantum dots as new reducing agent. Anal Chim Acta., 692(1-2), 103-108 (2011).   DOI
77 Liu, X., Hu, Y., Zheng, S., Liu, Y., He, Z. and Luo, F., Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticlesenriched Salmonella enteritidis. Sens. Actuators B Chem., 230, 191-198 (2016).   DOI
78 Ghasemi, F., Hormozi-Nezhad, M.R., Mahmoudi, M., A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg (II). Sens Actuators B Chem., 259, 894-899 (2018).   DOI
79 Kukkar, M., Tuteja, S.K., Kumar, P., Kim, K.-H., Bhadwal, A. S., Deep, A., A novel approach for amine derivatization of MoS2 nanosheets and their application toward label-free immunosensor. Anal. Biochem., 555, 1-8 (2018).   DOI