Browse > Article
http://dx.doi.org/10.13103/JFHS.2019.34.4.317

Application of Nanoparticles in Food Preservation and Food Processing  

Prakash, J. (Department of Nanotechnology, SRM University)
Vignesh, K. (Department of Physics, SRM University)
Anusuya, T. (Department of Nanotechnology, SRM University)
Kalaivani, T. (Department of Physics, SRM University)
Ramachandran, C. (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University)
Sudha, Rani R. (School of Food Technology and Biotechnology, Kyungpook National University)
Rubab, Momna (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University)
Khan, Imran (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University)
Elahi, Fazle (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University)
Oh, Deog-Hwan (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University)
DevanandVenkatasubbu, G. (Department of Nanotechnology, SRM University)
Publication Information
Journal of Food Hygiene and Safety / v.34, no.4, 2019 , pp. 317-324 More about this Journal
Abstract
This study focuses on the role of nanotechnology in the field of food industries. Bioactive components with antimicrobial activity against food pathogens are encapsulated into nanoparticles (NPs) to improve and extend their efficiency in food preservation. However, these NPs should be biocompatible and nontoxic for humans. Advancement in this field has resulted in the development of NPs for food packaging in some industries. The most commonly used group of NPs in the food industry is metal oxide. As metal oxide NPs such as zinc oxide and titanium dioxide exhibit antimicrobial activity in food materials, the NPs can be used for food preservation with enhanced functional properties. The application and effects of nanotechnology in correlation with the nutritional and sensory properties of foods were briefly discussed with a few insights into safety regulations on nano-based food formulation and preservation.
Keywords
Nanotechnology; Nanoparticles; Food pathogens; Antimicrobial activity; Food preservation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kubiak, P., Froschl, T., Husing, N., Hormann, U., Kaiser, U., Schiller, R., Weiss, C.K., Landfester, K., Wohlfahrt-Mehrens, M.: $TiO_2$ anatase nanoparticle networks: Synthesis, structure, and electrochemical performance. Small, 7, 1690-1696 (2011).   DOI
2 Holley, C.: Nanotechnology and packaging. secure protection for the future. VerpackungsRundschau., 56, 53-56 (2005).
3 Pawar, A.: Nanotechnology: The multidisciplinary technology-A review. J. Pure Appl. Sci. Technol., 6,11-16 (2016).
4 Brody, A.L.: Nano and food packaging technologies converge. Food Technol., 60, 92-94 (2006).
5 Lagaron, J.M., Cabedo, L., Cava, D., Feijoo, J.L., Gavara, R., Gimenez, E.: Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additiv. Contam.,23, 994-998 (2005).
6 Kotov, N.A.: Layer-by-layer assembly of nanoparticles and nanocolloids: Intermolecular interactions structure and materials perspective. In Multilayer Thin Films: Sequential assembly of nanocomposite materials, (Decher, G. and Schlenoff, J.B. eds.) Strauss Offsetdruck GmbH, Morlenbach, Germany, pp. 207-243 (2003).
7 Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano. Lett., 2, 311-314 (2000).   DOI
8 Kim, K.D., Han, D.N., Lee, J.B., Kim, H.T.: Formation and characterization of Ag- deposited $TiO_2$ nanoparticles by chemical reduction method. Scripta Mater., 54, 143-146 (2006).   DOI
9 Krishna, V., Pumprueg, S., Lee, S.H., Zhoa, J., Sigmund, W., Koopman, B., Moudgil, B.M.: Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Proc. Safety Environ. Prot. 83, 393-397 (2005).   DOI
10 Lee, S.B., Martin, C.R.: Electromodulated molecular transport in gold nanotube membranes. J. Am. Chem. Soc., 124, 11850-11851 (2002).   DOI
11 Munish, G., Paramjeet, S., Shveta, R.: Optimizing physical layer energy consumption for reliable communication in multi-hop wireless sensor networks. Ind. J. Sci. Technol., 8, 1-7 (2015).   DOI
12 Rouhi, M.: Novel chiral separation tool. Chem. Eng. News, 80, 13-13 (2002).
13 Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Hoda, M., Salem, M.F., Brimer, L.: antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Safety., 31, 211-218 (2011).   DOI
14 Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci., 55, 241-249 (2009).   DOI
15 De Azeredo, H.M.: Nanocomposites for food packaging applications. Food Res. Int.,42, 1240-1253 (2009).   DOI
16 Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Ashokkumar, S.: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. Acta. Mol. Biomol. Spectrosc., 143, 158-164 (2015).   DOI
17 Xie, Y., He, Y., Irwin, P.L., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 77, 2325-2331 (2011).   DOI
18 Rajiv, P., Rajeshwari, S., Venckatesh, R.: Bio-fabrication of zinc oxide nanoparticles using leaf extract of Partheniumhysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc.,12, 384-387 (2013).
19 Bhumi, G., Savithramma, N.: Biological synthesis of zinc oxide nanoparticles from Catharanthusroseus (l.) G. Don. leaf extract and validation for antibacterial activity. Int. J. Drug Dev. Res., 6, 208-214 (2014).
20 Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., Margel, S.: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A. Physicochem. and Eng. Aspects., 374, 1-8 (2011).   DOI
21 He, L., Liu, Y., Mustapha, A., Lin, M.: Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiol. Res., 166, 207-215 (2011).   DOI
22 Long, T.N., Saleh, R., Tilton, R., Lowry, G., Veronesi, B.: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ. Sci. Technol., 40, 4346-4352 (2006).   DOI
23 Wang, B., Feng, W., Wang, M., Wang, T., Gu, Y., Zhu, M., Ouyang, H., Shi, J., Zhang, F., Zhao, Y., Chai, Z., Wang, H., Wang, J.: A cute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 10, 263-276 (2007).
24 Logothetidis, S. (Ed.).: Nanostructured materials and their applications. Springer Science Heidelberg, Germany, (2012).
25 Taniguchi, N.: On the basic concept of 'nano-technology'. In Proceedings of International Conference Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering (1974).
26 Busquets, R., Mbundi, L.: Concepts of Nanotechnology. Emerg. Nanotechnol. Food Sci., 1-9 (2017).
27 Bhattacharyya, D., Singh, S., Satnalika, N., Khandelwal, A., Jeon, S.H.: Nanotechnology, Big things from a Tiny World: a Review. Nanotechnol., 2, 29-38 (2009).
28 Oyewumi, M.O., Kumar, A., Cui, Z.: Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines, 9(9), 1095-1107 (2010).   DOI
29 Alagarasi, A., Viswanathan, B.: Introduction to nanomaterials (ed.), Nanomaterials, Narosa Publishing House, India, (2009).
30 Brunner, T., Piusmanser, P., Spohn, P., Grass, R., Limbach, L., Ruinink, A.B., Stark, W.: In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40, 4374-4381 (2006).   DOI
31 Madureira, A.R., Pereira, A., Pintado, M.: Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym., 130, 429-439 (2015).   DOI
32 Chen, M., Mikecz, A.V.: Formation of nucleoplasmic protein aggregates impairs nuclear function in response to $SiO_2$nanoparticles.Experiment. Cell Res., 305, 51-62 (2005).   DOI
33 Zou, Y., Lee, H.Y., Seo, Y.C., Ahn, J.: Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against Foodborne Pathogens. J. Food Sci., 77, M165-M170 (2012).   DOI
34 Byrappa, K., Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater., 53, 117-166 (2007).   DOI
35 Ali, S.M., Yousef, N.M.H., Nafady, N.A.: Application of biosynthesized silver nanoparticles for the control of land snail Eobaniavermiculata and some plant pathogenic fungi. J. Nanomater., 10, 1155-218904 (2015).
36 Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J.: Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr. Polym., 157, 65-71 (2017).   DOI
37 Akhtar, M.S., Panwar, J., Yun, Y.S.: Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Suatain Chem Eng, 1(6), 591-602 (2013).   DOI
38 Prombutara, P., Kulwatthanasal, Y., Supaka, N., Sramala, I., Chareonpornwattana, S.: Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control., 24, 184-190 (2012).   DOI
39 Ravichandran, M., Hettiarachchy, N.S., Ganesh, V., Ricke, S.C., Singh, S.: Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Safety, 31, 462-471 (2011).   DOI
40 Reis, C.P., Neufeld, R.J., Ribeiro, A.J., Veiga, F.: Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2(1), 8-21 (2006).   DOI
41 Brinker C.J., Scherer, G.W.: Sol - gel science: The Physics and the chemistry of sol-gel processing. Academic Press, Inc. London (2013).
42 Betke, A., Kickelbick, G.: Bottom-up, wet chemical technique for the continuous synthesis of inorganic nanoparticles. Inorganics, 2, 1-15 (2014).   DOI
43 Aslan, B., Ozpolat, B., Sood. A.K., Lopez-Berestein, G.: Nanotechnology in cancer therapy. J. Drug Target., 21, 904-913 (2013).   DOI
44 Emeje, M.O., Obidike, I.C., Akpabio, E.I., Ofoefule, S.I.: Nanotechnology in drug selivery. In Recent advances in novel drug carrier system. Intech, (2012).
45 Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., Bannerjee, S.K.: Drug delivery systems: An updated review. Int J Pharm Investig, 2(1), 2-11 (2012).   DOI
46 Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev, 38(9), 2532-2542 (2009).   DOI
47 Alfadul, S.M., Elneshwy, A.A.: Use of nanotechnology in food processing, packaging, and safety-review. Afr. J. Food Agri. Nutr. Dev., 10, 2719-2739 (2010).
48 Shah, B., Davidson, P.M., Zhong, Q.: Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. Int. J. Food Microbiol., 161, 53-59 (2013).   DOI
49 Smolander, M., Chaudhry, Q.: Nanotechnologies in food packaging. Nanotechnol. Food, 14, 86-101 (2010).   DOI
50 Avella, M., De Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P., Volpe, M.G.: Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem., 93, 467-474 (2005).   DOI
51 Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., Watkins, R.: Applications and implications of nanotechnologies for the food sector. Food Additi. Contam., 25, 241-258 (2008).   DOI
52 Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phy. Chem. Chem. Physics, 9(19), 2319-2340 (2007).   DOI
53 Lee, J., Kim, J., Jeong, M., Lee, H., Goh, U., Kim, H., Park, J. H.: Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano letters, 15(5), 2938-2944 (2015).   DOI
54 Mohanta, Y.K., Panda, S.K., Bastia, A.K., Mohanta, T.K.: Biosynthesis of silver nanoparticles from protiumserratum and investigation of their potential impacts on food safety and control. Front. Microbiol.,6, 626 (2017).
55 Chowdhuri, A.R., Bhattacharya, D., Sahu, S.K.: Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans, 45(7), 2963-2973 (2016).   DOI
56 Bajpai, V.K., Kamle, M., Shukla, S., Mahato, D.K., Chandra, P., Hwang, S.K., Han, Y.K.: Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal., 26(4), 1201-1214 (2018).   DOI
57 Morais, M.G.D., Martins, V.G., Steffens, D., Pranke, P., Costa1, J.A.V.D.: Biological Applications of Nanobiotechnology. J. Nanosci. Nanotechnol.,14, 1007-1017 (2014).   DOI
58 Slootweg, P.J., Hordijk, G.J., Schade, Y., van Es, R.J., Koole, R.: Treatment failure and margin status in head and neck cancer. A critical view on the potential value of molecular pathology. Oral oncology, 38(5), 500-503 (2002).   DOI
59 Cho, K., Wang, X.U., Nie, S., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 14(5), 1310-1316 (2008).   DOI
60 Jana, N.R., Gearheart, L., Murphy, C.J.: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B, 105(19), 4065-4067 (2001).   DOI
61 Chauhan, N., Tyagi, A.K., Kumar P., Malik, A.: Antibacterial Potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front. Microbiol.,7, 1748 (2017).
62 Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K. C., Nautiyal, C.S.: Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour. Technol., 166, 235-242 (2014).   DOI
63 Khosravi-Darani, K., Pardakhty, A., Honarpisheh, H., Rao, V.M., Mozafari, M.R.: The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron, 38, 804-818 (2007).   DOI
64 Velmurugan, P., Cho, M., Lim, S.S., Seo, S.K., Myung, H., Bang, K.S., Oh, B.T.: Phytosynthesis of silver nanoparticles by Prunusyedoensis leaf extract and their antimicrobial activity. Materials Letters, 138, 272-275 (2015).   DOI
65 Su, X.L., Li, Y.: Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia c oli O157: H7. Analytical Chem., 76(16), 4806-4810 (2004).   DOI
66 Schoning, M.J., Jacobs, M., Muck, A., Knobbe, D.T., Wang, J., Chatrathi, M., Spillmann, S.: Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sensors and Actuators B: Chemical, 108(1-2), 688-694 (2005).   DOI
67 Wang, L., Wei, Q., Wu, C., Hu, Z., Ji, J., Wang, P.: The Escherichia coli O157: H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin, 53(8), 1175-1184 (2008).