Browse > Article
http://dx.doi.org/10.13103/JFHS.2014.29.3.211

Inhibitory Effect of Antimicrobial Food against Bacillus cereus  

Song, Miok (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Hwang, Youngok (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Kim, Soojin (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Ryu, Seunghee (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Jeong, Hyowon (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Park, Jungeun (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Kim, Dami (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Park, Geonyong (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Choi, Sungmin (Microbiological Control Team, Seoul Metropolitan Government Research Institute of Public Health & Environment)
Publication Information
Journal of Food Hygiene and Safety / v.29, no.3, 2014 , pp. 211-216 More about this Journal
Abstract
Bacillus cereus was isolated in 155 of 4,318 food samples from 2012 to 2013. Of the isolates, 140 isolates were performed antimicrobial disk test against garlic, cinnamon, ginger, and green tea extracted at two different temperature, $25^{\circ}C$ and $70^{\circ}C$. The isolates from Powdered Red Pepper showed frequently to 48.65%, and followed by Agriculture Products (31.08%) and Kimchi (25.61%). The isolation rate of Cooked Foods in the Restaurant supposed to causing food poison was 1.17%. Analysis of antimicrobial activity showed that $25^{\circ}C$ garlic extract, $25^{\circ}C$ green tea extract, and $70^{\circ}C$ green tea extract resisted against all 140 isolates and the others resisted against some isolates. Antimicrobial activity was depended on the temperature; garlic > green tea > cinnamon in $25^{\circ}C$ and green tea > garlic > cinnamon in $70^{\circ}C$. The correlation analysis of each extracts showed that geen tea extract was different significantly with garlic and cinnamon extracting in $25^{\circ}C$ and with only garlic extracting in $70^{\circ}C$ at p < 0.05.
Keywords
B. cereus; antimicrobial activity; ginger; garlic; green tea; cinnamon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ceuppens S, Boon N, and Uyttendaele M. Diversity of Bacillus cereus group strains if reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol. 84, 433-450 (2013).   DOI
2 Arnesen LPS, Fagerlund A, and Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 32, 579-606 (2008).   DOI   ScienceOn
3 Rahmati T and Labbe R. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafoovd. J Food Prot. 71, 1178-1185 (2008).   DOI
4 Ministry of Food and Drug Safety. Food Code. Available from: http://fse.foodnara.go.kr/residue/RS/jsp/menu_02_01_03.jsp?idx = 12. Accessed March 24 2014.
5 Granum PE and Lund T: Bacillus cereus and its food poisoning toxins. FEMS Microbial Lett. 157, 223-228 (1997).   DOI   ScienceOn
6 Ministry of Food and Drug Safety. Bacillus cereus Risk profile. Available from: http://www.foodnara.go.kr/foodnara/board-list.do. Accessed March 24 2014.
7 Tajkarimi MM, Ibrahim SA, and Cliver DO. Antimicrobial herb and spice compounds in food. Food control. 21, 1199-1218 (2010).   DOI   ScienceOn
8 Bassolé I, and Juliani H. Essential oils in combination and their antimicrobial properties. Molecules. 17, 3989-4006 (2012).   DOI
9 Cho MH, Bae EK, Ha SD, Park JY. Application of natural antimicrobials to food industry. Food Science Industry. 38, 36-45 (2005).
10 Ryu PY. Antimicrobial effects of tea extracts on foodborne infectious bacteria. GOVP1200505949 (2004).
11 Sofia PK, Prasad R, Vijay VK, and Srivastava AK. Evaluation of antibacterial activity of indian spices against common foodborne pathogens. Int J Food Sci and Tech. 42, 910-915 (2007).   DOI
12 Sakanaka S, Aizawa M, Kim M, and Yamanoto T. Inhibitory effects of green tea polyphenols on growth and cellular adherece of an oral bacterium, Porphyromona gingivalis. Biosci Biotechnol Biochem. 60, 745-749 (1996).   DOI   ScienceOn
13 Susan Munro. Disk diffusion susceptibility testing. Clinical Microbiology Procedures Handbook vol.1. (ASM), 5.1.1-5.1.30 (1992).
14 Asahi Y, Noiri Y, Miura J, Maezono H, Yamaguchi M, Yamamoto R, Azakami H, Hayashi M, Ebisu S. Effects of the tea catechin Epigallocatechin Gallate on Porphyromonas gingivalis biofilms. J Appl Microbiol. 116, 1164-1171 (2014).   DOI
15 Ministry of Food and Drug Safety. Food Code. Available from: http://fse.foodnara.go.kr/ residue/RS/jsp/menu_02_01_03.jsp?idx = 391. Accessed March 24 2014.
16 Hong JW, Yang GE, Kim YB, Eom SH, Lew JH, and Kang H. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement Altern Med. 12, 237 (2014).
17 Yeh HF, Luo CY, Lin CY, Cheng SS, Hsu YR, and Chang ST: Methods for thermal stability enhancement of leaf essential oils and their main constituents from indigenous cinnamon (Cinnamomum osmophloeum). J Agric Food Chem. 61, 6293-6298 (2013).   DOI
18 Becker H, Schaller G, Von Wiese W, and Terplan G. B. cereus in infant foods and dried milk products. Int J Food Microbiol. 23, 1-15 (1994).   DOI   ScienceOn
19 Guinebretiere MH and Nguyen-The C. Sources of Bacillus cereus contamination in a pasteurized zucchini puree processing line, differentialted by two PCR-based methods. FEMS Microbiol Ecol. 43, 207-215 (2003).
20 Gull I, Saeed M, Shaukat H, Aslam SM, Samra ZQ, and Athar AM. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Ann Clin Microbiol Antimicrob. 11, 8 (2012).   DOI
21 Small LD, Bailey JH, and Cavallito CJ: Alkyl thiosulfinates. J Am Chem Soc. 69, 1710-1713 (1947).   DOI
22 Ko MS and Yang JB. Effect of heating temperature on antimicrobial activities of garlic Juice. Korean J Food Preserv. 15, 568-575 (2008).   과학기술학회마을
23 Feldberg RS, Chang SC, Kotik AN, Nadler M, Neuwirth Z, Sundstrom DC, and Thompson NH. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrobial Agent and Chem. 32, 1763-1768 (1988).   DOI   ScienceOn
24 Park HJ, Jeon BT, Kim HC, Rho GS, Shin JH, Sung NJ, Han J, and Kang D. Aged red garlic extract reduces lipopolysaccharide- induced nitric oxide production in RAW 264.7 mac rophages and acute pulmonary inflammation through haeme oxygenase-I induction. Acta Physiol. 205, 61-70 (2012).   DOI   ScienceOn
25 Shin JH, Ryu JH, Kang MJ, Hwang CR, Han JH, and Kang DW. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in WAQ 264.7 macrophages. Food Chem Toxicol. 58, 545-551 (2013).   DOI