Browse > Article

Inhibitory Effects of Garlic Oil on Human Low Density Lipoprotein Oxidation  

Yang, Seung-Taek (Department of Food Science and Biotechnology, Kyungsung University)
Publication Information
Journal of Food Hygiene and Safety / v.26, no.3, 2011 , pp. 254-259 More about this Journal
Abstract
Growing evidence indicates that oxidized low density lipoprotein (LDL) may promote atherogenesis. Therefore, inhibition of LDL oxidation may impede this process. The inhibitory effected on the susceptibility of human LDL to $Cu^{2+}$ or macrophages induced oxidation was investigated by monitoring thiobarbituric acid reactive substances(TBARS). Organosulfur compounds of garlic oil contains diallyldisulfide, diallyltrisulfide, diallyltetrasulfide, and diallyl pentasulfide in order. Garlic oil inhibited LDL oxidation by $Cu^{2+}$, or macrophages in a dose dependently, with a 20~60 ${\mu}g$, as increased TBARS assay. Garlic oil, at 60 ${\mu}M$, almost completely inhibited macrophages induced increase in electrophoretic mobility of LDL. When compared with several other antioxidants, probucol showed highest ability, and then garlic oil showed a much higher ability than natural occurring antioxidants, ${\alpha}$-tocopherol and ascorbic acid. The results suggested that garlic oil might play the inhibitory effects in the process of LDL oxidation.
Keywords
Low density lipoprotein (LDL); garlic oil; macrophages;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Havel, R. J., Eder, H. A. and Brabdon, J. H. : The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1352 (1995).
2 Esterbauer, H., Striegl, G., Puhl, H. and Rotheneder, M. : Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Rad. Res. Commun. 6, 67-75 (1989).   DOI
3 Yaki, K. : A simple fluorometric assay for lipoprotein in blood plasma. Biochem Med. 15, 212-217 (1976).   DOI   ScienceOn
4 Greenspan, P. and Gutman, R. L. : Detection by nilered of agarose fel electro- phoresed native and modified low density lipoprotein. Electrophoresis 14, 65-68 (1993).   DOI   ScienceOn
5 Leake, D. S. and Rankin, S. M. : The oxidative modification of low density lipoproteins by macrophages. Biochem. J. 270, 741-748 (1990).
6 Lowry, O. H., Rosebrough, N. J., Far, A. L. and Randall, R. J. : Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275 (1951).
7 Tallarida, R. J and Murray, R. B. : Manual of pharmacological calculations with computer programs, PP. 145-148. 2th eds., Springer verlag, New York (1987).
8 Sovova, M. and Sova, P. : Pharmaceutical importance of Allium sativumL. 1. Organic sulfur compounds and their transformation based on percent knowledge, Ceska A Slovenska Famacil. 50, 12-20 (2001).
9 Harats, D. M. Y., Ben-Naim, Dabach, G., Hollander, Q., Stein, O. and Stein, Y. : Cigarets smoking renders LDL susceptible to peroxidative modification and enhanced metabolism by macrophages, Atherosclerosis 79, 245-252 (1989).   DOI
10 Robak, J., Spridi, F., Wolbis, M., Krolikowska, M. and Sol, I. : Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity as well as nonenzymatic lipid oxidation, Pharmcol. Pharm. 40, 451-458 (1988).   DOI
11 Cristol, L. S., Jialal, I. and Grindy, M. : Effect of low-dose probucol therapy on LDL oxidation and the plasma lipoprotein profile in male volunteers. Atherosclerosis. 97, 11-20 (1992).   DOI   ScienceOn
12 Jialal, I., Norkus, E. P., Cristol, L. and Grundy, S. M. : $\beta$-Carotene inhibits oxidative modification of low-density lipoprotein. Biochim. Biophys. Acta. 1086, 134-138 (1991).   DOI   ScienceOn
13 Simon, J. A. : Vitamin C and cardiovascular disease: A Review. Am. Coll. Nutr. 11, 107-125 (1992).
14 Esterbauer, H., Dieber-Rotheneder, M., Striegl, G. and Wage, G. : Role of vitamin E in preventing the oxidation of low-density lipoprotein. Am. J. Clin. Nutr. 53, 314S-321S (1991).
15 Jenero, D. R. : Therapeutic potential of vitamin E in the pathogenesis of spontaneous atherosclerosis. Free Radic. Biol. Med. 11, 129-144 (1991).   DOI   ScienceOn
16 Jiala, I., Vega, G. L. and Grundy, S. M. : Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoproteins. Atherosclerosis 82, 185-191 (1990).   DOI   ScienceOn
17 Yamasaki, T., Li, L. and Lau, BHS. : Garlic compounds protect vascular endothelial cells from hydrogen peroxide-induced oxidant injury. Phytother Res 8, 408-41 (1994).   DOI   ScienceOn
18 Ide, N, A., Nelson, B. and Lau, BHS. : Aged garlic extract and its constituents inhibit copper-induced oxidative modification of low density lipoprotein. Planta Med. 63, 263-270 (1993).
19 Bordia, A. and Bansal, H. C. : Essential oil of garlic in prevention of athero- sclerosis. Lancet 2, 1491-1491 (1997).
20 Mirhadi, S. A., Singh, S. and Gupta, P. P. : Effect of garlic supplementation to cholesterol-rich diet on development of atherosclerosis in rabbits. Indian J Exp Biol. 29, 162-168 (1991).
21 Prasad, K. V., Laxdal, A., Yu, M. and Raney, B. L. : Antioxidant activity of allicin, an active principle on garlic. Mol Cell Biochem 148, 183-189 (1995).   DOI   ScienceOn
22 Horie, T., Awazu, S., Itakura, Y. and Fue, T. : Identified dially polysulfides from an aged garlic extract which protects the membranes from lipid peroxidation. Planta Med. 58, 468-475 (1992).   DOI   ScienceOn
23 Lawson, L. D., Wood, S. G. and Hughes, B. G. : HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Placenta Med, 57, 263-270 (1991).
24 Brown, M. S. and Goldstein, J. L. : Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annw. Rev. Biochem. 52, 223-261 (1983).   DOI   ScienceOn
25 Steinberg, D., Prthasarathy, S., Carew, T. E., Khoo, J. C. and Wiztum, J. L. : Beyond cholesterol Modifications of low density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915-924 (1987).
26 Wistum, J. L. and Steinberg, D. : Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785- 1792 (1991).   DOI
27 Steinbrecher, U. P., Zhang, H. and Lougheed, M. : Role of oxidatively modified LDL in atherosclerosis. Free Radic. Biol. Med. 9, 155-178 (1990).
28 Phathasarathy, S., Steingerg, D. and Witwtum, J. L. : The role of oxidized low-density lipoproteins on the pathogensis of atherosclerosis. Ann. Rev. 43, 219-227 (1995)
29 Esterbauer, H., Gebicki, J. H., Dieber-Rotheneder, M., Waeg, G. and Rable, H. : Effect of antioxidants on oxidative modification of LDL, Ann. Med. 23, 573-581 (1991).   DOI   ScienceOn
30 Jessul, W., Dean, R. T. and de Whalpt, C. V. : The role of oxidative modification and antioxidants in LDL metabolism and atherosclerosis, in Antioxidant in Therapy and Preventive Medicine Emerit, I., Parker, L., Auclair, C. (ed.). New York, 139-149 (1990).
31 Bjorkhem, I., Henricheson-Freyschuss, A., Breuer, O., Diczfaiusy, V., Berflund, L., and Henrikson, P. : The antioxidant of butylated hydroxytoluene protects against atherosclerosis. Athereoscler. Thromb. 11, 15-22 (1991).   DOI
32 Jiala, I. and Scaccini, C. : Antioxidants and atherosclerosis. Curr. Opin. Lipidol. 3, 324-328 (1992).   DOI
33 Bridges, A. B., Scott, N. A. and Belch, J. F. : Probucol a superoxide free radical scavenger in vitro. Atherosclerosis. 89, 263- 265 (1991).   DOI   ScienceOn