Browse > Article
http://dx.doi.org/10.23093/FSI.2015.48.2.35

Research Trend and Characteristic of Imported Functional Grains  

Sung, Jung-Min (Korean Food Research Institute)
Publication Information
Food Science and Industry / v.48, no.2, 2015 , pp. 35-41 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Berganza BE, Moran AW, Rodriguez MG Coto NM, Santamaria M, Bressani. Effect of Variety and Location on the Total Fat, Fatty Acids and Squalene Content of Amaranth. Plant Foods for Human Nutri. 58: 1-6 (2003)
2 Jo, HJ, Kim JW, Yoon JA, Kim KI, Chung KH, Song BC, An JH. Antioxidant activities of Amaranth(Amaranth spp. L.) flower extracts. Korean J. Food Nutr. 2: 175-182 (2014)
3 Plate AYA, Areas JAG. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chem. 76: 1-6 (2002)   DOI
4 Bergamo P, Maurano F, mazzarella G, Iaquinto G, Vocca I, Rivelli AR, Falco ED, Gianfrani C, Rossi M. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol. Nutr. Food Res. 55: 1266-1270 (2011)   DOI
5 Czerwinskia J, Bartnikowskab Z, Leontowicza H, Langeb E, Leontowicza M, Katrichc E, Trakhtenbergd S, Gorinsteinc S. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol containing diets. J. nutritional biochem. 15: 622-629 (2004)   DOI
6 Alvarez-Jubetea L, Arendtb EK. Gallaghera E. Nutritive value of pseudocereals and their increasing use as functional gluten free ingredients. Trend in Food Sci. Technol. 21: 106-113 (2010)   DOI
7 Mariotti M, Lucisano M, Pagani MA, Ng PKW. The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Research International 42: 963-975 (2009)   DOI
8 Gambus, H., Gambus, F., & Sabat, R. Quality improvement of gluten-free bread by Amaranthus flour. Zywnosc, 9: 99-112 (2002)
9 Rayas-duarte P, Mock CM, Satterlee LD. Quality of Spaghetti Containing Buckwheat, Amaranth, and Lupin Flours. Cereal Chem. 73: 381-387 (1996)
10 Caselato-Sousa VM, Ameava-Farfan J. State of knowledge on amaranth grain: A comprehensive review. J. Food Sci. 77: 93-104 (2012)   DOI
11 Cho SG, Kays SJ. Aroma-activity compounds of wild rice(Zizania palustris L.) 52: 1463-1470 (2013)
12 RDA database. (http://www.rda.go.kr/children/farm/rice_heal_08.jsp?child_menu_id=menu_s2)
13 Przybylski R, Klensporf-Pawlik D, Anwar F, Rudzinska M. Lipid components of north american wild rice(Zizania palustris) J. Am. Oil Chem, Soc. 86: 553-559 (2009)   DOI
14 Hoover R, Sailaja Y, Sosulski FW. Characterization of starches from wild and long grain brown rice. Food Res Int. 29: 99-107 (1996)   DOI
15 Wang HL, Swain EW, Hesseltine CW, Gumbmann. Protein quality of wild rice. J. Agric. Food Chem. 26: 309-312 (1978)   DOI
16 Qiu Y, Liu Qin, Beta T. Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fraction. J. Agri. Food Chem. 57: 7543-7551 (2009)   DOI
17 Kang TS, Jeong HS, Park HJm Lee MY, Kong YJ, Jung IS. Biological activities of oat soluble ${\beta}$-glucans. Korean J. Food Preserv. 10: 547-553 (2003)
18 Lee JA, Park GS, Ahn SH. Comparative of physicochemical and sensory quality characteristics of cookies added with barleys and oatmeals. Korean J Food Cook Sci 18: 238-246 (2002)
19 Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. European J. Chlinical Nutr. 48: 465-474 (1994)
20 Othman RA, Moqhadasian MH, Jones PJ. Cholesterol-lowing effects of oat ${\beta}$-glucans. Nutr. Rev. 69: 299-309 (2011)   DOI
21 Kerckhoffs AJMD, Hornstra G, Mensink RP. Cholesterol-lowering effect of ${\beta}$-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when ${\beta}$-glucan is incorporated into bread and cookies. Am J Clin Nutr 78: 221-227 (2003)   DOI
22 Lee YK, Lee HS, Kim BW. Effect of short-term feeding of dietary fiber supplements on glucose metabolism in subjects with non-insulin-dependent diabetes mellitus. J Korean Soc. Food Sci Nutr 25: 846-854 (1996)
23 Kang SA, Jang KH, Hong KH, Choi WA, Jung KH, Lee IY. Effects of dietary ${\beta}$-glucan on adiposity and serum lipids levels in obese rats induced by high fat diet. J Korean Soc Food Sci Nutr 31: 1052-1057 (2002)   DOI
24 Peterson DM. Oat antioxidant. J. Cereal Sci. 33: 115-129 (2001)   DOI
25 Pearce, BC, Parker, RA, Deason, ME, Qureshi, AA. Wight, JJK. Hypocholesterolemic activity of synthetic and natural tocotrienols. Journal of Medicinal Chemistry 35: 3595-606 (1992)   DOI
26 Decker EA, Rose DJ, Stewart D. Processing of oats and the impact of processing operations on nutrition and health benefits. British J. Nutri. 112: 58-64 (2014)   DOI
27 Anttila H, Sontag-Sotrohm S, Salovaara H. Viscosity of beta-glucan in oat products. Agric. Food Sci. 13: 80-87 (2004)   DOI
28 Onning G, Akesson B, Oste R, Effects of consumption of oat milk, soya milk, or cow' milk on plasma lipids and antioxidative capacity in healthy subjects. Ann Nutr Metab 42: 211-20 (1998)   DOI
29 Zhang H, Onning G, Triantafyllou AO, Nutritional properties of oatbased beverages as affected by processing and storage. J Sci Food Agric 87: 2294-2301 (2007)   DOI
30 Kang TS, Jeong HS, Park HJ, Lee MY, Kong YJ, JUng IS. Biological activities of oat soluble ${\beta}$-glucans. Korean J. Food Preserv. 10: 547-553 (2003)
31 Bhatty, RS. Composition and quality of lentil(Lens culinaris Medik): A review. Can Inst. Food Sci. Technol. J. 21: 144-160 (1988)   DOI
32 Yadav SS, McNeil DL, Stevenson PC. Lentil An ancient crop for modern times. published by Springer, Dordrecht Netherlands (2007)
33 Erskine W. The lentils: bonaty, production and uses. CABI (2009)
34 Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs GF, Vandenberg A. The potential of lentil(Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180: 123-128 (2011)   DOI
35 Thavarajah D, Thavarajah P, Sarker A, Vandenberg A. Lentils (Lens culinaris Medikus subspecies culinaris): a whole food for increased iron and zinc intake. J. Agric. Food Chem. 57: 5413-5419 (2009)   DOI
36 Shepherd J, Codde SM, Ford I, Isles CG, Lorimer AR, McFarlane PW, Mckillop J H, Packhard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 333: 1301-1307 (1995)   DOI
37 Han H, Baik BK. Antioxidant activity and phenolic content of lentils(Lens culinaris), chickpea(Cicer arietinum L.), peas(Pisum sativum L.) and soybeans(Glycine max), and their quantitative changes during processing. International J. Food Sci. Tech. 43: 1971-1978 (2008)   DOI
38 Gupta DS, Thavarajah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S. Lentils (Lens culinaris L.), a Rich Source of Folates. K. Agri. Food Chem. 61: 7794-7799 (2013)   DOI
39 Zou Y, Chang S KC, Gu Y, Qian SY. Antioxidant Activity and Phenolic Compositions of Lentil(Lens culinaris var. Morton) Extract and Its Fractions. J. Agri. Food Chem. 59: 2268-2276 (2011)   DOI
40 Duane WC. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J. Lipid Res. 38: 1120-1128 (1997)
41 Shams H, Tahbaz F, Entezari MH, Adadi A. Effects of cooked lentils on glycemic control and blood lipid of patients with type 2 diabetes. ARYA Atherosclerosis J. 4: 1-5 (2008)
42 Ixtaina VY, Nolasco SM, Tomas MC. Physical properties of chia (Salvia ispanica L.) seeds. Industrial crops and product. 28: 286-293 (2008)   DOI
43 UK Ag. database. Chia. (http://www.uky.edu/Ag/CCD/introsheets/chia.pdf) (2012)
44 Cahill JP. Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Economic Botany, 57: 604-618 (2003)   DOI
45 Jeong SW, Kim JY, Paek JE, Kim JH, Kwak KS, Kwon OR. Systematic review of the effect of omega-3 fatty acids on improvement of blood flow while focused on evaluation of claims for health functional food. J. Nutr. Health. 2013: 226-238 (2013)
46 ACNFP. Application for the authorizing of chia seed from Salvia hispanica L. for consumption as a food and as an ingredient in additional food groups. (http://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/applicdosschiacompany.pdf)
47 Reyes E, Tecabte A, Valdivia-Lopez MA. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 107: 656-663 (2008)   DOI
48 Chicco AG, D'Alessandro ME, Hein GJ, Oliva ME, Lombardo YB. Dietary chia seed (Salvia hispanica L.) rich in a-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. British J. Nutri. 101: 41-50 (2009)   DOI
49 Choe EO. Functional lipids and application of ometa-3 fatty acids to conventional foods. 4: 1-13 (2010)
50 Munoz LA, Cobos A, Diaz O, Aguilera. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Engineering 108: 216-224 (2012)   DOI
51 Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA, Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry 107: 656-663 (2008)   DOI
52 Korea Customs Service. (http://www.customs.go.kr/kcsweb/user.tdf?a=user.newTradestatistics.NewTradestatisticsApp&c=1003&mc=STATS_INQU_TRADE_020)
53 Lee JH. New beneficial crops amaranth and quinoa for food nutritional source. Food industry and nutrition. 12: 29-36 (2007)
54 FAO. Quinoa. (http://www.fao.org/quinoa-2013/what-is-quinoa/origin-and-history/en/)
55 Koziol M. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis. 5: 35-68 (1992)   DOI
56 Lee JH, Kim KJ, Lee J, Lee ST, Ryu SN. Functional ingredient and their some variance in amaranth and quinoa. Korean J. Crop Sci. 41: 145-165 (1996)