Browse > Article

Biological Activities of Oenothera laciniata Extracts (Onagraceae, Myrtales)  

Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Oh, Dae-Ju (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Jung, Yong-Hwan (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Lee, Wook-Jae (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
Publication Information
Korean Journal of Food Science and Technology / v.38, no.6, 2006 , pp. 810-815 More about this Journal
Abstract
The biological activities of Oenothera laciniata extracts were measured, including antioxidant activity and cytotoxic effects. O. laciniata is an endemic species of Jeju Island, Korea with a seaside habitat. The concentration of total polyphenolic compounds from ethanol (EtOH), n-hexane, dichloromethane ($CH_2Cl_2$), ethylacetate (EtOAc), butanol (BuOH), and water fractions of O. laciniata was 63.96, 8.49, 28.11, 172.64, 114.56, and 34.91 mg/g, respectively. The EtOAc fraction contained the highest antioxidative activities ($IC_{50}$), measured as follows: 16.19 ${\mu}g/mL$ in DPPH radical scavenging capacity, 220.37 ${\mu}g/mL$ in xanthine oxidase inhibitory activity, 42.07${\mu}g/mL$ in superoxide radical scavenging capacity, and 421.33 ${\mu}g/mL$ in nitric oxide scavenging capacity. The cytotoxicity of O. laciniata extracts was examined through their effect on the growth of HL-60 cells. Incubation of HL-60 cells with the EtOAc fraction resulted in the greatest inhibition of cell growth; high DNA fragmentation and numerous sub-G1 hypodiploid cells were observed in HL-60 cell cultures treated with the EtOAc fraction. These results suggest that the EtOAc fraction of O. laciniata has potent apoptotic and antioxidative activities in vitro.
Keywords
Oenothera laciniata; antioxidant; HL-60 cells; cytotoxicity; apoptosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chung LY, Kong SK, Fung KP, Kwork TT. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci. 68: 1207-1214 (2001)   DOI   ScienceOn
2 Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-1462 (1995)   DOI   ScienceOn
3 Muller I, Jenner A, Bruchelt G, Niethanmmer D, Halliwell B. Effect of concentration on the cytotoxic mechanism of doxorubicin- apoptosis and oxidative DNA damage. Biochem. Bioph. Res. Co. 230: 254-257 (1997)   DOI   ScienceOn
4 Varro ET, Lynn RB, James ER. Pharmacognosy 9th edition, Lea and Febriger Philadelphia, p. 471 (1988)
5 Okuda T, Hatano T, Yazaki K. Guavin B, an ellagitannin of novel type. Chem. Pharm. Bull. 32: 3787-3788 (1984)   DOI   ScienceOn
6 Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of ginkgo biloba extract EGb 761. Biochem. Bioph. Res. Co. 201: 748-755 (1994)   DOI   ScienceOn
7 Jung YJ, Ahn BG, Choi YJ. Isolation and enzyme inhibition of tannins from Korean green tea. Korean Biochem. J. 26: 84-87 (1993)
8 Planchon SM, Wuerzberger S, Frydman B, Huston P, Church DR, Wilding G, Boothman DA. ${\beta}$-Lapachone-mediated apoptosis in hwnan promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response. Cancer Res. 55: 3706-3711 (1995)
9 Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctiorius L.). J. Korean Soc. Food Sci. Nutr. 29: 1127-1132 (2000)   과학기술학회마을
10 Whang HJ, Han WS, Yoon KR. Quantitative analysis of total phenolic content in apple. Anal. Sci. Technol. 14: 377-383 (2001)
11 Hatano T, Yasuhara T, Fukuda T, Noro T, Okuda T. Phenolic constituents of licorice. II. Structures of licopyranocoumarin, licoarylcoumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase. Chem. Pharm. Bull. 37: 3005-3009 (1989)   DOI   ScienceOn
12 Lee SJ, Ko WG, Kim JH, Sung JH, Lee SJ, Moon CK, Lee BH. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem. Pharmacol. 60: 677-685 (2000)
13 Liu M, Pelling JC, Ju J, Chu E, Brash DE. Antioxidant action via p53-mediated Apoptosis. Cancer Res. 58: 1723-1729 (1998)
14 Kim DS, Ahn BW, Yeum DM, Lee DH, Kim SB, Park YH. Degradation of carcinogenic nitrosamine formation factor by natural food components. 1. Nitrite-scavenging effects of vegetable extracts. Bull. Korean Fish. Soc. 20: 463-468 (1987)   과학기술학회마을
15 Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metast. Rev. 11: 95-103 (1992)   DOI
16 Gutfinger T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58: 966-968 (1981)   DOI
17 Aruoma OI. Nutrition and health aspects of free radIcals and antloxidants. Food Chem. Toxicol. 32: 671- 683 (1994)   DOI   ScienceOn
18 Korycka-Dahl M, Richardson T. Initiation of oxidative changes in foods. J. Dairy Sci. 63: 1181-1198 (1980)   DOI   ScienceOn
19 Hockenhery DM, Oltavai ZN, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251 (1993)   DOI   ScienceOn
20 Bartsh H, Ohshima H, Pignatell B. Inhibition of endogenous nitrosation: Mechanism and implications in human cancer prevention. Mutat. Res. 202: 307-324 (1988)   DOI
21 Fesus L, Davies PJ, Piacentini M. Molecular mechanisms in the program of cell death by apoptosis. Eur. J. Cell BioI. 56: 170-177 (1991)
22 Keum YS, Park KK, Lee JM, Chun KS, Shur YJ. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 150: 41-48 (2000)   DOI   ScienceOn
23 Fesus L, Thomazy V, Autuori F, Ceru MP, Tarcsa E, Piacentini M. Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action. FEBS Lett. 245: 150-154 (1989)   DOI   ScienceOn
24 Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 (1958)
25 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and (15N) nitrate in biological fluids. Anal. Biochem. 126: 131-136 (1982)   DOI   ScienceOn
26 Lee TB. Illustrated Flora of Korea. Hyangmoon Publishing Co., Seoul, Korea (1999)
27 Macrae R, Robinson RK, Sadler MJ. Encyclopedia of Food Science Food Technology and Nutrition. Academic Press. New York, NY, USA. pp. 3240-3249 (1993)
28 Kim JY, Jung KS, Jeong HG. Suppressive effects of the kahweol and cafestol on cycloocygenase-2 expression in macrophages. FEBS Lett. 569: 321-326 (2004)   DOI   ScienceOn
29 Lee JH, Lee SR. Some physiological activity of phenolic substances in plant foods. Korean J. Food Sci. Technol. 26: 317-323 (1994)   과학기술학회마을
30 Cheng ZJ, Kuo SC, Chan SC, Ko FN, Teng CM. Antioxidant properties of butein isolated from Dalbergia odorifera. Biochem. Biophys. Acta. 1392: 291-299 (1998)   DOI   ScienceOn
31 Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem. Pharmacol. 55: 1747-1758 (1998)   DOI   ScienceOn
32 Clement MV, Hirpara JL, Chawdhury S, Pervaiz S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92: 996-1002 (1998)