Browse > Article
http://dx.doi.org/10.13106/kjfhc.2019.vol5.no3.21

Development of protein tyrosine phosphatase 1B (PTPIB) Inhibitors from marine sources and other natural products-Future of Antidiabetic Therapy : A Systematic Review  

KAUR, Kulvinder Kochar (DR Kulvinder Kaur Centre For Human Repoduction)
ALLAHBADIA, Gautam (Ex-Rotunda-A Centre for Human reproduction)
SINGH, Mandeep (Swami Satyanand Hospital)
Publication Information
The Korean Journal of Food & Health Convergence / v.5, no.3, 2019 , pp. 21-33 More about this Journal
Abstract
The incidence of both obesity and Type 2 Diabetes Mellitus( DM) is increasing proportionately so that causes of deaths from these has overtaken from that of malnourishment. Hence it has been recommended to treat the 2 in parallel considering the role of diabesity on health. Important causes of T2DM are insulin resistance (IR) and /or inadequate insulin secretion. Protein tyrosine phosphatase 1B(PTPIB) has a negative impact in insulin signaling pathways and hence plays crucial role inT2DM,since its overexpression might induce IR. Thus PTPIB is considered a therapeutic target for both obesity and T2DM, there has been a search for novel ,promising natural inhibitors. We conducted a pubmed search for articles related to PTPIB inhibitors from natural causes be it marine sources or other natural sources. Out of 988 articles we selected 100 articles for review. Thus various bioactive molecules isolated from marine organisms that can acts as PTPIB Inhibitors and thus possess antidiabetic activity both in vitro/ in vivo studies ,besides products from fruits like Chinese raspberry or curcumin used as routine spices are described with their chemical classes, structure-activity relationships and potency as assessed by IC 50 values are discussed. More work is required to make this a reality.
Keywords
PTPIB Inhibitors; Diabesity; Marine Sources; Natural Products; Antidiabetic Drugs;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Saleh, A.S.M., Zhang, Q., & Shen, Q.(2016). Recent research in antihypertensive activity of food protein derived hydrolysates and peptides. Crit Rev Food Sci Nutr, 56, 760-787.   DOI
2 Scheen, A.J., & Lefebvre, J.(1999). Troglitazone:antihyperglycemic activity and potential role in the treatment of type 2 diabetes. Diabetes Car, 22, 1568-77.   DOI
3 Seo, C., Han,J.J., Lee, H.K., & Oh, H.(2011). PTPIB Inhibitory secondary metabolites from the Antarctic lichen Lecidella carpaththica. Mycology, 2, 18-23.   DOI
4 Seo, C., Sohn, J.H., Oh, H., Kim, B.Y., & Ahn, J.(2009). Isolation of Protein tyrosine phosphatase 1B-inhibitory metabolite from the marine derived fungus Cosmospora sp.SF 5060. Biorg Med Chem Lett, 19, 6095-6097.   DOI
5 Shi, D., Feng, X., He, J., Li, L., Fan, X., & Han, L.(2008). Inhibition of bromophenols against PTPIB and antihyperglycemic effects of Rhodomela confervoides extract in diabetic rats. Chi Sci Bull, 53, 2476-2479.   DOI
6 Shi, D., Guo, S.J., Jiang, B., Guo, C., Wang, T., Zhang, l., & Li, J.(2013). HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides :Synthesis of antidiabetic effects in C57BL/KsJ-db/dbmice. Mar Drugs, 11, 350-362.   DOI
7 Sohn, J.H., Lee, Y.R., Lee, D.S., Kim, Y.C., & Oh, H.(2013). PTP1B inhibitory andantiinflammatory effects of secondary metabolites from marine derived fungal strains Penicillium sp and Eurotium sp. J MIcrobiol Biotechnol, 23, 1206-1211.   DOI
8 Targett, N.M., & Arnold, T.M.(1998). Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol, 34, 195-205.   DOI
9 Thilagam, E., Parimala Devi, B., Kumarappan, C., & Mandal, S.C.(2013). ${\alpha}$- Glucosidase and ${\alpha}$-amylatory inhibitory activity of Senna surattens. J Acupunct Meridian Stud, 6, 24-30.   DOI
10 Wang, W., Odaka, K., Shi H., Wang, Y., Okuyama, T.(2005). Structure and reductase inhibitory effects of bromophenols from the red algae Symphocladia latiuscala. J Nat Prod, 68, 620-622.   DOI
11 Wilson, D.P., Wan, Z.K., Xu, W.X,. Kirincich, S.J., Follows, B.C., Joseph-McCarthy, D., & Foreman, K.(2007). Structure based optimization of Protein tyrosine phosphatase 1B inhibitors:From the active site to the second phosphotyrosine binding site, J Med Chem, 50, 4681-4698.   DOI
12 Wu, X., Hardy, V.E., Joseph, J.L, Jabbour, S., Mahadev, K., Zhu, L., & Goldstein, B.J.(2003). Protein tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition. Metabolism, 52, 705-712.   DOI
13 Xin, F., Yang, F., Liang, Y., Li, L., Xia, Y., Jiang, F., Liu, W., & Qi, Y.(2019). PTPIB Inhibitors. Eur J Med Chem, 164, 408-4   DOI
14 Yamazaki, H., Sumilat, D.A., Kanno, S., Ukai, K., Rotinsulu, H., Wewenkang, D.S., & Ishikawa, M.(2013a). A polybromodiethyl ether from an Indonesian marine sponge Lamellodysidea hebacea and its chemical derivatives inhibit Protein tyrosine phosphatase 1B-an important target for diabetes treatment. J Nat Med, 67, 730-735.   DOI
15 Yamazaki,,H., Nakazawa, T., Sumilat, D.A., Takahashi, O., Ukai, K., Takahashi, S,, & Namikoshi, M.(2013b) Euryspongins A-C ,Three new unique sequiterpenes from a marine sponge Euryspongia sp. Bioorg Med Chem Lett, 23, 2151-2154..   DOI
16 Zhao, C., Wu ,Y.J., Yang, C.F., Liu, B., Huang, Y.F.(2015). Hyotensive, hypoglycemic and hypolipidemic effects of bioactive compounds from microalgae and marine microorganisms. Int J Food Sci Technol, 50, 1705-1717.   DOI
17 Zabotony, J., Bence-Hanulee, K.K,. Stricker Krongrad, A., Haj, F,, Wang, Y,. Minokoshi, Y.,& Kim. Y.B.(2002). regulates leptin signal transduction in vivo. Dev Cell, 2, 489-495.   DOI
18 Zhang, X.Y,. Li, W., Wang, J., Li, N., Cheng, M.S., & Koike, K.(2019). Protein tyrosine phosphatase 1B-inhibitory activities of ursane type triterpenesfrom Chinese raspberry k,fruits of Rubus chingii. Chin JNat Med, 17(1), 15-21.
19 Zhang,Z.Y., & Lee, S.Y.(2003). PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin Investig Drug, 12, 373-381.   DOI
20 Zhang,Y.L., Guo, Y.W., Jiang, H.L., & Shen, X..A.(2009). new sequiterpene quinines,dysidine ,from the sponge Dysidea villosa activates the insulin signaling pathway through inhibition of PTPases. Acta Pharm Sin, 30, 333-345.   DOI
21 Brownlee, M.(2001). Biochemistry and molecular Cell Biology of diabetic complications. Nature, 414, 813-820.   DOI
22 Al l-Lawati, J.A.(2017). Diabetes Mellitus: ALocal and Global Public Health Emergency! Om Med J, 32, 177-179.   DOI
23 Bence, K.K., Delibrogiv, M., Xue, B., Gorgun, C.Z., Hotamisligil, G.S., Neel, B.G., & Kahn, B.B.(2006).Neuronal PTP1B regulates body weight ,adiposity and leptin action. Nat Med, 12, 917-924.   DOI
24 Blunt, J.W., Coop, B.R., Hu, W.P., Munro, M.H., Northcote, P.T., & Prinsep, M.R.(2009). Marine natural products. Nat Prod Rep, 26, 170-244.   DOI
25 Brown Shimer, S., Johnson, K.A., Lawrence, J.B., Johnson, C., Bruskin, A., Green, N.R., & Hill, D.E.(1990). Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyosyl phosphatase 1B. Proc Natl Acad Sci USA, 87, 5148-52
26 Cho,N.H., Shaw, J.E., Karunga, S., Hua8ng, Y., DeRocha Fernandes, J.D., Ohlrogge, A.W., & Malanda, B.(2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diab Res Clin Pract, 138, 271-281.   DOI
27 Zhang ,S., & Zhang,Z. Y.(2007). PTP1B as a drug target :Recent developments in PTP1B inhibitor discovery. Drug Discov Today, 12, 373-381.   DOI
28 Byon ,J.C.H., Kusari, A.B., & Kusari, J.(1998). Protein tyrosine phosphatase 1B acts as a negative regulator of insulin signal eduction. Mol Cell Biochem, 182, 101-108.   DOI
29 Cheng ,A., Dube, N., Gu, F., & Tremblay, M.L.(2002). Coordinated action of Protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem, 269, 1050-1059.   DOI
30 Cheng, A., Uetani, N., Simoncic, P.D., Chaubey, V.P., Lee-Loy, A., McGlade, C.J., Kennedy, B.P., & Tremblay, M.L.(2002). Attenuation of leptin action and regulation of Protein tyrosine phosphatase 1B. Dev Cell, 12, 497-503.
31 Choochote, 20W., Suklampoo, L., & Ochaikul, D.(2014). Evaluation of antioxidant capacities of green microalgae. J Appl Phycol, 26, 43-48.   DOI
32 Cheung, A., Kusari, J., Jansen, D., Bandyopadhyay, D., Kusari, A,, & Bryer-Ash, M.(1999). Marked impairment of Protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type2 diabetes mellitus. J Lab Clin Med, 134, 115-123.   DOI
33 Debbab, A., Aly, A.H., Lin, W.H., & Proksch, P.(2010). Bioactive compounds from marine bacteria and fungi. Microb Biotechnol, 3, 544-563.   DOI
34 Dube, N., & Tremblay, M.L.(2005). Involvement of the small protein tyrosine phosphatases TC-PTB and PT P1B in signal transduction and disease: From diabetes, obesity to cell cycle, and cancer. Biochym Biophys Acta, 1754, 108-117.
35 Faulkner, D.(1977). Marine Natural Product Chemistry. Springer; New York,NY,USA.
36 Elefthenou, P., Geronikaki, A., & Petrou, A.(2019). PTPIB Inhibition, A Promising Approach For the Treatment of Diabetes Type II. Curr Top Med Chem, ;doi102174/156802619666 19020 1152153
37 Fantus, L.G., Deragon, G., Lai, R., & Tang, S.(1995). Modulation of insulin action by vandate: Evidence of a role of phosph1otyrosine phosphatase activity to alter cellular signaling. Mol Cell Biochem, 153, 103-112.   DOI
38 Fantus, L.G., & Tsiani, E.(1998). Multifunctional actions of vanadium compounds on insulin signaling pathways :Evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem, 182, 102-119.
39 Fouad, M., Edrada, R.A., Ebel, R.,Wray, V., Muller, W.E.G., Lin, W.H., & Proksch, P.(2006). Cytotoxic Isomalabaricane Triterpenes from the marine sponge Rhabdastrella Globostellata. J Nat Prod, 69, 211-218.   DOI
40 Goldstein, B.J., Bittner-Kowalczyk, A., While, M.F., & Harbeck, M.(2000). Tyrosine dephosphorylation and deactivation of insulin receptor substrate -1 by protein tyrosine phosphatase 1B mediated leptin signaling. J Biol Chem, 275, 4283-4289.   DOI
41 Gupta, S., & Abu-Ghannan, N.(2011). Bioactive poteial and possible health effects of edible brown seaweeds. Trends Food Sci Technol, 22, 315-326.   DOI
42 Ingelbrigtsen, R.A., Hansen, .E, Andersen, J.H., & Eilertsen, H.C.(2015). Light and temperature effects on bioactivity in diatoms. J Applied Physiol, 28, 939-950.
43 Jiao, W.H., Huang, X.J., Yang, J.S., Yang, F., Piao, S.J., Gao. H., & Li, J.(2012). Dysidavarones A-D ,new sequiterpene quinones from the marine sponge Dysidea avara. Org Lett, 14, 202-205.   DOI
44 Jung, M., Park, M., Lee, H.C., Kang, Y.H., Kang, E.S., Kim, S.K.(2001). Antidiabetic agents from medicinal plants. Curr Med Chem, 13, 1203-1218.   DOI
45 Jiang, C.S., Liang, L.F., & Guo, Y.W.(2012). Natural products possessing Protein tyrosine phosphatase 1B-(PTP1B) inhibitory activity found in the last decades. Acta Pharmacol Sin, 33, 1217-45.   DOI
46 Jung, H.A.,Yoon, N.Y.,Woo, M.H., & Choi, J.S.(2008). Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose mediated protein damage and rat lens aldolase reductase. Fish Sci, 74, 1363-1365.   DOI
47 Jung, H.A., Islam, M.N., Lee, C.M., Jeong, H.O., Chung, H.Y., Woo, H.C., & Choi, J.S.(2012). Promising antidiabetic potential of fucoxanthin isolated from the edible brown algaeEisenia bicyclis and Undaria pinnatifida. Fish Sci, 78, 1321-1329.   DOI
48 Khan,W., Rayirath, U.P., Subramaniam, S., Jithesh, M.N., Rayorath, P., Hodges, D.P., & Critchley, A.T.(2009). Seaweed extracts as biostimulants of plant growth and development . J Plant Growth Regul, 228, 386-399.
49 Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L. Zobotony ,J.M., Moghal, N., & Lubkin, M.(2000) Increased energy expenditure,decreased adiposityand tissue el. pecific insulin sensitivity in Protein tyrosine phosphatase 1B-ine phosphatase 1B-deficient mice. Mol Cell Biol, 20, 5479-5489.   DOI
50 Kim, K.Y., Nam, K.A., Kurihara, H., & Kim, S.H.(2008). Potent Alpha-glucosidase inhibitors purified from the red algae Grateloupa elliptica. Phytochemistry, 69, 2820-25.   DOI
51 Kim, K.Y., Nam, K.A., Kurihara, H., & Kim, S.H.(2010). Alpha-glucosidase inhibitory activity of bromophenol purified from the red algae Polyopes lancifolia. J Food Sci,75, H145-H150.
52 Kurihara, H., Mitain, T., Kawabata, J., & Takahashi, K.(1999).Two new bromophenols from the red alga Odonthalia corymbifera. J Nat Prod, 62, 882-884.   DOI
53 Kostrzewa, T., Przychodzen, P., Gorska-Ponikowska, M., & Kuban-Jan kowska, A.(2019). Curcuminand cinnamaldehyde as PTPIB inhibitors with Antidiabetic and Anti Cancer Potential. Anticancer Res, 39(2),745-749.   DOI
54 Kulvinder, K.K., Allahbadia, G.N., & Mandeep, S.(2019). Importance of simultaneous treatment of obesity and diabetes mellitus: A sequelae to the understanding of diabesity-A review. Obes Res Open J., 6(1),1-10. doi: 10.17140/OROJ-6-136 .   DOI
55 Kurihara, H,, Mitain, T., Kawabata, J., & Takahashi, K.(1999). Inhibitory potencies of bromophenols from Rhodomelacea algae against ${\alpha}$-glucosidase activity. Fish Sci, 65, 300-303.   DOI
56 Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Espito, F., Helland, K., & Hanssen, K..O.(2016). Bioactivity screening of microalgae for antioxidant, antiinflammatory, anticancer, antidiabetes and antibacterial activities. Front Mar Sci, doi:10.3389/fmars.2016.00068.   DOI
57 Lee, D. S., Jang, J.H., Ko, W., Kim, K.S., Sohn, J.H., Kang, M.S., Ahn, J.S., Kim, Y.C.,& Oh, H.(2013). PTPIB inhibitor and anti-inflammatory effects of secondary metabolites isolated from the marine derived fungus Penicillium sp J-55. Mar Drugs, 11, 1409-1426.   DOI
58 Lee, S.H., Min, K.H., Han, J.S., Lee, D.H., Park, D.B., Jung, W.K., Park, P.J., & Jeon, B.T. (2012).Effect of brown alga ,Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/dbmice,a model of type 2 diabetes mellitus. Food Chem Toxicol, 50, 575-582.   DOI
59 Lee, H.J., Kim, Y.A., Lee, J.L., Lee, B.J., & Seo, Y.W.(2007). Screening of Korean marine plants extracts for inhibitory activity on Protein tyrosine phosphatase 1B. J Appl Biol Chem,50, 74-77.
60 Lee, S.H., Ko, S.C., Kang, M.C., Lee, D.H., & Jeon, Y.J. (2016). Octa phlorethol,a marine algae product ,exhibits antidiabetic effects of type 2 diabetic mice by activating amp-activated protein kinaseand upregulating the expression of glucose transporter 4. Food Chem Toxicol, 91, 58-64   DOI
61 Leung, K.W., Posner, B.I., & Just, G.(1999). Periodinates: A new class of Protein tyrosine phosphatase Inhibitors. Bioorg Med Chem Lett, 9, 353-356.   DOI
62 Liang, L., Kurtan,T., Mandi, A., Gao, L.X., Li, J., Zhang, W., & Guo, Y.W.(2014). Sarsolelane and Capnosane Diterpenes from Hainan soft coral Sarcophyton trocheliophorum Marenzeller as PTPIB Inhibitors. Eur J Org Chem,11 ,1841-1847.
63 Liang, L.F., Gao, L.X.,Li, J.,Tagialatela -Scafatti, O., & Guo, Y.W.(2013). Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTPIB Inhibitors. Biorg Med Chem Lett, 21,5076-5080.   DOI
64 Li, X., Xu, Q., Li, C., Luo, J., Li, X., Wang, L., Jiang, B., & Shi, D.(2019). Toward a treatment of diabesity: in vitro and in vivo evaluation of uncharged bromophenol derivatives as a new series of PTPIB Inhibitors. Eur J Med Chem, 166, 178-185.   DOI
65 Mannikam, V., Vasiljev, T., Donkor, O.N., & Mathai, M.L.(2016). A review of potential marine derived hypotensive and antiobesity peptides. Crit Rev Food Sci Nutr, 56, 92-112.   DOI
66 Liu, S., Zeng, L.F., Wu, L., Yu, X., Xue, T., Gunawan. A.M., Long, Y.Q., & Zhang, Z.Y.(2008). Targeting inactive enzyme conformation: Aryl diketoid as a new class of PTP1B1 inhibitors. J Am Chem Soc, 130, 17075-17084.   DOI
67 Lund, I.K., Hansen, J.A., Andersen, H.S., Moller, N.F.H., Billestrup, N.(2005). Mechanism of protein tyrosine phosphatase 1B inhibition of leptin signaling. J Mol Endocrinol, 34, 339-351.   DOI
68 Abdul, Q.A., Choi, R.J., Jung, H.A., & Choi, J.S.(2016) Health benefit of fucosterol from marine algae: A Review. .J Sci Food Agric,96, 1856-1866.   DOI
69 Ahmad,F., Li,P.M., Myerovitch, J., & Goldstein, B.J.(1995). Osmotic loading of neutralizing antibodies demonsrtrates a role for protein tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem, 270, 20503-20508.   DOI
70 Maeda, H., Hosokawa, M., Sashima,T., & Miyashita, K.(2007). Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and dcreases blood glucose in obese/diabetic KK-Ay mice. J Agric FoodChem, 55, 7701-7706.   DOI
71 Meshkani, R., Taghikami, M., Al-Khateb, H., Larijani, B., Khatami, S., Sidiropoulos, G.K., Hegde, R.A., & Adeli, K.(2007). Polymorphisms within the protein tyrosine phosphatase 1B(PTPN1) gene promoter.Functional characterization and association with type 2 diabetes and related metabolic traits. Clin Chem, 53, 1585-1592.   DOI
72 Meyerovitch, J., Farfel, Z., Sack, J., & Schechter, Y.(1987). Characterizatiob and mode of action ,Oral administration of vandate normalizes blood glucose levels in streptozotocin -treated rats. J Biol Chem, 1262, 6658-6662.   DOI
73 Meyerovitch, J., Backer, J., & Kahn, C.R.(1989). Hepatic phosphotyrosine phosphatase activity and its alterations in diabeticrats. J Clin Investig, 84, 976-983.   DOI
74 Mohamed, S., Hashim, S.N., & Rahman, H.A.(2012). A sustainable functional food for complementary alternative therapy. Trends Food Sci Technol, 23, 83-96.   DOI
75 Li, Y., Zhang, Y., Shen, X., & Guo, Y.W.(2009). A novel sequiterpine quinine from Hainan sponge Dysidea villosa. Bioorg Med Chem Lette, 19, 390-392.   DOI
76 Andersen, H.S., Oben, O.H., Iversen, L.F., Sorensen, A.L.P.., Mortensen, S.P., Christensen, M., Branner, S.(2007). Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of Protein tyrosine phosphatase 1B. J Med Chem, 50, 4443-4459.
77 Ahmad ,F., Considine, R.V., Bauer, T.L., Ohannesian, J.P., Marco, C.C., & Goldstein, M.J.(1997). Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced Protein tyrosine phosphatases in adipose tissue. Metabolism, 46, 1140-1145.   DOI
78 American Diabetes Association (2009). Diagnosis and classificationof diabetes mellitus. Diabetes Care, doi:10.2337/dc 14-S081.   DOI
79 American Diabetes Association (2015) Classification and diagnosis of dibetes. Diabetes Care, 40,S11-S24.   DOI
80 Ali, M.Y., Kim, D.H., Seong, S.H., Kim, H.R., Jung, H.A.,& Choi, J. S.(2009). $\alpha$-Glucosidaseand Protein tyrosine phosphatase 1B inhibitory activity of Plastoquinones from Marine brown alga Sargassum Serratfolium. Mar Drugs,15, 368.   DOI
81 Peng, j., Yuan, J.P., Wu, C.F., & Wang, J.H.(2011). Fucoxanthin,a marine carotenoid present in brown seaweeds and diatoms:Metabolism and bioactivities relevant to human health. Mar Drugs, 9, 1806-1828.   DOI
82 Moon, H.F., Islam, N., Ahn, B.R., Chaudhary, S.S., Sohn, H.S., Jung, H.A., & Choi. J.S.(2011) Protein tyrosine phosphatase 1B and ${\alpha}$-glucosidase inhibitory Phlorotannins from edible brown algae Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem, 75, 1472-1480.   DOI
83 Myers, M.P., Andersen, J.N., Cheng, A., Tremblay, M.L., Horvath, C.M., Parisien, J.P., & Salmeen, A.(2001).TYK2 and JAK2 are substrates of Protein tyrosine phosphatase 1B. J Biol Chem, 276, 47771-47774.   DOI
84 Pangestuti, R., & Kim, S.K.(2011). Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods, 3, 255-266.   DOI
85 Pontiroli, A.E.(2004) Type 2 diabetes mellitus is becoming the most common type of diabetes in school children. Acta Diabetol, 41, 85-90   DOI
86 Qin, J., Su, H., Zhang, Y., Gao, J., Zhu, L., Wu ,X., Pan,H., & Li, X.(2010). Highly brominated metabolites fromred alga Laurencia similis inhibit Protein tyrosine phosphatase 1B Bioorg. Med Chem Lett, 20, 7152-7154.   DOI
87 Ray, S.D.(2017). A worldwide yearly survey of new data in adverse reactions. Elsevier;Waltham.MA.USA. .
88 Ritta, K.(2008). Brown Algal phlorotannins : Improving and Applying Chenical Methods. University of Turku; Turku.Finland .
89 Ruocco, N., Constantini,S., Guarinello, S., & Constantini, M.(2016). Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical. Molecules , 21, 551.   DOI