Browse > Article
http://dx.doi.org/10.5103/KJSB.2021.31.2.79

Plantar Hypoesthesia Alters Gait Kinematics Pattern in Individuals with and without Chronic Ankle Instability  

Kang, Tae Kyu (Graduate School of Physical Education, Yonsei University)
Lee, Sae Yong (Graduate School of Physical Education, Yonsei University)
Lee, Inje (Graduate School of Physical Education, Yonsei University)
Kim, Byong Hun (Graduate School of Physical Education, Yonsei University)
Jeong, Hee Seong (Graduate School of Physical Education, Yonsei University)
Kim, Chang Young (Division of Sports, Myong-Ji University)
Publication Information
Korean Journal of Applied Biomechanics / v.31, no.2, 2021 , pp. 79-86 More about this Journal
Abstract
Objective: The purpose of this study was to identify the effect of reduced plantar cutaneous sensation on gait kinematics during walking with and without CAI. Method: A total of 20 subjects involved in this study and ten healthy subjects and 10 CAI subjects participated underwent ice-immersion of the plantar aspect of the feet before walking test in this study. The gait kinematics were measured before and after ice-immersion. Results: We observed a before ice-immersion on plantar cutaneous sensation, CAI subject were found to reduced ankle dorsiflexion, knee external rotation, hip adduction, and internal rotation compared to control subject. After ice-immersion, CAI subjects were found to reduce knee external rotation, hip adduction. However, no significant ankle joint kinematics. Conclusion: While walking, gait pattern differences were perceived between groups with and without plantar cutaneous sensation. The results of the study may explain the abductions in the hip angle movements in CAI patients at initial contact compared to healthy subjects in the control group when plantar cutaneous sensation was reduced. A change in proximal joint kinematics may be a conservative strategy to promote normal gait patterns in CAI patients.
Keywords
Chronic Ankle Instability (CAI); Ice-immersion; Plantar cutaneous sensation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Son, S. J., Kim, H., Seeley, M. K. & Hopkins, J. T. (2019). Altered walking neuromechanics in patients with chronic ankle instability. Journal of Athletic Training, 54(6), 684-697.   DOI
2 Van Emmerik, R. E., Hamill, J. & McDermott, W. J. (2005). Variability and coordinative function in human gait. Quest, 57(1), 102-123.   DOI
3 Vicenzino, B., Branjerdporn, M., Teys, P. & Jordan, K. (2006). Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain. Journal of Orthopaedic & Sports Physical Therapy, 36(7), 464-471.   DOI
4 Yeung, M., Chan, K. M., So, C. & Yuan, W. (1994). An epidemiological survey on ankle sprain. British Journal of Sports Medicine, 28(2), 112-116.   DOI
5 Yokoyama, S., Matsusaka, N., Gamada, K., Ozaki, M. & Shindo, H. (2008). Position-specific deficit of joint position sense in ankles with chronic functional instability. Journal of Sports Science & Medicine, 7(4), 480.
6 Konradsen, L., Bech, L., Ehrenbjerg, M. & Nickelsen, T. (2002). Seven years follow-up after ankle inversion trauma. Scandinavian Journal of Medicine & Science in Sports, 12(3), 129-135.   DOI
7 Bullock-Saxton, J. E. (1994). Local sensation changes and altered hip muscle function following severe ankle sprain. Physical Therapy, 74(1), 17-28.   DOI
8 Delahunt, E., Monaghan, K. & Caulfield, B. (2006). Altered neuro-muscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint. The American Journal of Sports Mediciene, 34(12), 1970-1976.   DOI
9 Kim, C. Y., Ryu, J. H., Kang, T. K., Kim, B. H., Lee, S. C. & Lee, S. Y. (2019). The Structural Characteristics of the Ankle Joint Complex and Declination of the Subtalar Joint Rotation Axis between Chronic Ankle Instability (CAI) Patients and Healthy Control. Korean Journal of Sport Biomechanics, 29(2), 61-70.   DOI
10 Konradsen, L. (2002). Factors contributing to chronic ankle instability: kinesthesia and joint position sense. Journal of Athletic Training, 37(4), 381.
11 Konradsen, L. & Voigt, M. (2002). Inversion injury biomechanics in functional ankle instability: a cadaver study of simulated gait. Scandinavian Journal of Medicine & Science in Sports, 12(6), 329-336.   DOI
12 Li, Z. M. (2006). Functional degrees of freedom. Motor Control, 10(4), 301-310.   DOI
13 Monaghan, K., Delahunt, E. & Caulfield, B. (2006). Ankle function during gait in patients with chronic ankle instability compared to controls. Clinical Biomechanics, 21(2), 168-174.   DOI
14 Nawata, K., Nishihara, S., Hayashi, I. & Teshima, R. (2005). Plantar pressure distribution during gait in athletes with functional instability of the ankle joint: preliminary report. Journal of Orthopaedic Science, 10(3), 298-301.   DOI
15 Siegel, N., Erickson, K., Thompson, J., Abraham, K., Telemeco, T. & Hale, S. (2009). Establishing the Foot and Ankle Disability Index as a sensitive, specific, and valid tool for identifying deficits related to chronic ankle instability. Journal of Athletic Training, 44(3S), S100-S101.
16 Kim, B. H., Kim, C. Y., Kang, T. K., Cho, Y. J. & Lee, S. Y. (2018). Immediate Effects of Joint Mobilization Techniques on Clinical Measures in Individuals with CAI. Korean Journal of Sport Biomechanics, 28(4), 219-225.   DOI
17 Hertel, J. (2008). Sensorimotor deficits with ankle sprains and chronic ankle instability. Clinics in Sports Medicine, 27(3), 353-370.   DOI
18 Hertel, J. & Corbett, R. O. (2019). An updated model of chronic ankle instability. Journal of Athletic Training, 54(6), 572-588.   DOI
19 Hopkins, W., Marshall, S., Batterham, A. & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine Science in Sports Exercise, 41(1), 3.   DOI
20 Drewes, L. K., McKeon, P. O., Paolini, G., Riley, P., Kerrigan, D. C., Ingersoll, C. D. & Hertel, J. (2009). Altered ankle kinematics and shank-rear-foot coupling in those with chronic ankle instability. Journal of Sport Rehabilitation, 18(3), 375-388.   DOI
21 Docherty, C. L., Gansneder, B. M., Arnold, B. L. & Hurwitz, S. R. (2006). Development and reliability of the ankle instability instrument. Journal of Athletic Training, 41(2), 154.
22 Feger, M. A., Donovan, L., Hart, J. M. & Hertel, J. (2015). Lower extremity muscle activation in patients with or without chronic ankle instability during walking. Journal of Athletic Training, 50(4), 350-357.   DOI
23 Boling, M. C., Padua, D. A., Marshall, S. W., Guskiewicz, K., Pyne, S. & Beutler, A. (2009). A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) cohort. The American Journal of Sports Mediciene, 37(11), 2108-2116.   DOI
24 Carcia, C. R., Martin, R. L. & Drouin, J. M. (2008). Validity of the Foot and Ankle Ability Measure in athletes with chronic ankle instability. Journal of Athletic Training, 43(2), 179-183.   DOI
25 Chinn, L., Dicharry, J. & Hertel, J. (2013). Ankle kinematics of individuals with chronic ankle instability while walking and jogging on a treadmill in shoes. Physical Therapy in Sport, 14(4), 232-239.   DOI
26 Denegar, C. R., Hertel, J. & Fonseca, J. (2002). The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. Journal of Orthopaedic & Sports Physical Therapy, 32(4), 166-173.   DOI
27 Eils, E., Behrens, S., Mers, O., Thorwesten, L., Volker, K. & Rosenbaum, D. (2004). Reduced plantar sensation causes a cautious walking pattern. Gait & Posture, 20(1), 54-60.   DOI
28 Kim, C. Y., Kang, T. K., Kim, B. H. & Lee, S. Y. (2019). The Effect of Diminished Plantar Cutaneous Sensation in Y-balance Test between Chronic Ankle Instability (CAI) Patients versus Healthy Individuals. Korean Journal of Sport Biomechanics, 29(1), 33-41.   DOI
29 Lim, S. G., Oh, D. W. & Shim, J. H. (2008). The Effect of 4-Week Proprioceptive Exercise Program in Patients with Ankle Sprain and Chronic Ankle Instability. Journal of Korean Physical Therapy Science, 15(3), 19-29.
30 Dyck, P. J., O'brien, P., Kosanke, J., Gillen, D. & Karnes, J. (1993). A 4, 2, and 1 stepping algorithm for quick and accurate estimation of cutaneous sensation threshold. Neurology, 43(8), 1508-1508.   DOI
31 Fong, D. T. P., Hong, Y., Chan, L. K., Yung, P. S. H. & Chan, K. M. (2007). A systematic review on ankle injury and ankle sprain in sports. Sports Medicine, 37(1), 73-94.   DOI
32 Gribble, P., Hertel, J. & Denegar, C. (2007). Chronic ankle instability and fatigue create proximal joint alterations during performance of the Star Excursion Balance Test. International Journal of Sports Medicine, 28(03), 236-242.   DOI