Browse > Article
http://dx.doi.org/10.4014/mbl.1606.06007

Cultivable Bacterial Community Analysis of Saeu-jeotgal, a Korean High-Salt-fermented Seafood, during Ripening  

Jeong, Do-Won (Department of Bio and Fermentation Convergence Technology, Kookmin University)
Jung, Gwangsick (Department of Food Science and Biotechnology, Kyonggi University)
Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.3, 2016 , pp. 293-302 More about this Journal
Abstract
To determine the dominant bacterial species during the Saeu-jeotgal ripening process, the cultivable bacterial population was examined over a 135-day period using six different growth media. The greatest numbers of bacteria were identified when marine agar was used for culture, with maximum cell density identified at day 65 (2.51 × 107 colony forming units/g). Over the course of 135 days, the bacterial diversity was analyzed eight times. A total of 467 isolates, comprising 87 species from 42 genera, as well as 16 isolates belonging to previously unknown species, were identified. The number of species detected decreased from 39 at day 1 to 13 at day 135. The order of dominance at the genus level was as follows: Staphylococcus, Salimicrobium, Kocuria, and Psychrobacter. Staphylococcus and Salimicrobium accounted for 2% of the diversity at day 1, and then increased to 39% and 36%, respectively, at day 135. The dominant species Staphylococcus equorum, Salimicrobium salexigens, and Kocuria palustris accounted for 23.6%, 16.1%, and 10.9% of all isolates, respectively. Importantly, both St. equorum and Sm. salexigens remained viable at a NaCl concentration of 21% (w/v), which indicates their strong involvement in the ripening of Saeu-jeotgal.
Keywords
High-salt fermentation; jeotgal; Kocuria; Salimicrobium; Staphylococcus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abdeljabbar H, Cayol JL, Ben Hania W, Boudabous A, Sadfi N, Fardeau ML. 2013. Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int. J. Syst. Evol. Microbiol. 63: 2069-2074.   DOI
2 Akolkar AV, Durai D, Desai AJ. 2010. Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J. Appl. Microbiol. 109: 44-53.
3 Ammor MS, Mayo B. 2007. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76: 138-146.   DOI
4 AOAC. 2000. Official methods of analysis. 17th ed. Association of Official Analytical Chemist. Washington, D.C., USA.
5 Beddows CG, Ardeshir AG. 1979. The production of soluble fish protein solution for use in fish sauce manufacture I. The use of added enzymes. Int. J. Food Sci. Technol. 14: 603-612.
6 Bhupathiraju VK, McInerney MJ, Woese CR, Tanner RS. 1999. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int. J. Syst. Bacteriol. 49: 953-960.   DOI
7 Blaiotta G, Pennacchia C, Villani F, Ricciardi A, Tofalo R, Parente E. 2004. Diversity and dynamics of communities of coagulase-negative staphylococci in traditional fermented sausages. J. Appl. Microbiol. 97: 271-284.   DOI
8 Gildberg A. 2001. Utilisation of male Arctic capelin and Atlantic cod intestines for fish sauce production - evaluation of fermentation conditions. Bioresour. Technol. 76: 119-123.   DOI
9 Bockelmann W, Willems KP, Neve H, Heller KH. 2005. Cultures for the ripening of smear cheeses. Int. Dairy J. 15: 719-732.   DOI
10 Corbiere Morot-Bizot S, Leroy S, Talon R. 2006. Staphylococcal community of a small unit manufacturing traditional dry fermented sausages. Int. J. Food Microbiol. 108: 210-217.   DOI
11 Evers DJ, Carroll DJ. 1998. Ensiling salt-preserved shrimp waste with grass straw and molasses. Anim. Feed Sci. Technol. 71: 241-249.   DOI
12 Gildberg A, Espejo-Hermes J, Magno-Orejana F. 1984. Acceleration of autolysis during fish sauce fermentation by adding acid and reducing the salt content. J. Sci. Food Agri. 35: 1363-1369.   DOI
13 Guan L, Cho KH, Lee JH. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28: 101-113.
14 Han KI, Kim YH, Hwang SG, Jung EG, Patnaik BB, Han YS, et al. 2014. Bacterial community dynamics of salted and fermented shrimp based on denaturing gradient gel electrophoresis. J. Food Sci. 79: M2516-M2522.   DOI
15 Hiraga K, Nishikata Y, Namwong S, Tanasupawat S, Takada K, Oda K. 2005. Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp. RF2-5. Biosci. Biotechnol. Biochem. 69: 38-44.   DOI
16 Hur SH. 1996. Critical review on the microbiological standardization of salt-fermented fish product. J. Korean Soc. Food Sci. Nutr. 25: 885-891.
17 Jung JY, Lee SH, Lee HJ, Jeon CO. 2013. Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiol. 34: 360-368.   DOI
18 Irlinger F. 2008. Safety assessment of dairy microorganisms: coagulase-negative staphylococci. Int. J. Food Microbiol. 126: 302-310.   DOI
19 Jeon CO, Lim JM, Lee JM, Xu LH, Jiang CL, Kim CJ. 2005. Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int. J. Syst. Evol. Microbiol. 55: 1891-1896.   DOI
20 Jeong DW, Kim HR, Han S, Jeon CO, Lee JH. 2013. A proposal to unify two subspecies of Staphylococcus equorum: Staphylococcus equorum subsp. equorum and Staphylococcus equorum subsp. linens. Anton. Van. Leeuw. 104: 1049-1062.   DOI
21 Kim AJ, Park SY, Choi JW, Park SH, Ha SD. 2006. Assessment of microbial contamination and nutrition of Kwangchun Shrimp Jeotgal (Salt Fermented Shrimp). Korean J. Food Sci. Technol. 38: 121-127.
22 Kimura M. A 1980. Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.   DOI
23 Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. 2006. Effects of the addition of spleen of skipjack tuna (Katsuwonus pelamis) on the liquefaction and characteristics of fish sauce made from sardine (Sardinella gibbosa). Food Chem. 98: 440-452.   DOI
24 Kobayashi T, Kimura B, Fujii T. 2000. Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int. J. Syst. Evol. Microbiol. 50: 1621-1627.   DOI
25 Meugnier H, Bes M, Vernozy-Rozand C, Mazuy C, Brun Y, Freney J, et al. 1996. Identification and ribotyping of Staphylococcus xylosus and Staphylococcus equorum strains isolated from goat milk and cheese. Int. J. Food Microbiol. 31: 325-331.   DOI
26 Lee KH, Kim JH, Cha BS, Kim JO, Byun MW. 1999. Quality evaluationof commercial salted and fermented seafoods. Korean J. Food Sci. Technol. 31: 1427-1433.
27 Lopetcharat K, Park JW. 2002. Characteristics of fish sauce madefrom pacific whiting and surimi by-products during fermentationstage. J. Food Sci. 67: 511-516.   DOI
28 Oh SH, Heo OS, Bang OK, Chang HC, Shin H-S, Kim MR. 2004. Microbiological safety of commercial salt-fermented shrimp during storage. Korean J. Food Sci. Technol. 36: 507-513.
29 Mauriello G, Casaburi A, Blaiotta G, Villani F. 2004. Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Sci. 67: 149-158.   DOI
30 Montel MC, Masson F, Talon R. 1998. Bacterial role in flavour development. Meat Sci. 49S1: S111-S123.
31 Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4: 1-16.   DOI
32 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
33 Sinsuwan S, Rodtong S, Yongsawatdigul J. 2007. NaCl-activated extracellular proteinase from Virgibacillus sp. SK37 isolated from fish sauce fermentation. J. Food Sci. 72: C264-C269.   DOI
34 Talon R, Leroy S. 2011. Diversity and safety hazards of bacteria involved in meat fermentations. Meat Sci. 89: 303-309.   DOI
35 Sinsuwan S, Rodtong S, Yongsawatdigul J. 2008. Characterization of Ca2+-activated cell-bound proteinase from Virgibacillus sp. SK37 isolated from fish sauce fermentation. LWT - Food Sci. Technol. 41: 2166-2174.   DOI
36 Sinsuwan S, Rodtong S, Yongsawatdigul J. 2008. Production and characterization of NaCl-activated proteinases from Virgibacillus sp. SK33 isolated from fish sauce fermentation. Process Biochem. 43: 185-192.   DOI
37 Um MA, Lee CH. 1996. Isolation and identification of Staphylococcus sp. from Korean fermented fish products. J. Microbiol. Biotechnol. 6: 340-346.
38 Siringan P, Raksakulthai N, Yongsawatdigul J. 2006. Autolytic activity and biochemical characteristics of endogenous proteinasesin Indian anchovy (Stolephorus indicus). Food Chem. 98: 678-684.   DOI
39 Tian X-P, Dastager SG, Lee JC, Tang SK, Zhang YQ, Park DJ, et al. 2007. Alkalibacillus halophilus sp. nov., a new halophilic species isolated from hypersaline soil in Xin-Jiang province, China. Syst. Appl. Microbiol. 30: 268-272.   DOI
40 Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agri. Food Chem. 59: 8401-8408.   DOI
41 Yongsawatdigul J, Rodtong S, Raksakulthai N. 2007. Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. J. Food Sci. 72: M382-M390.   DOI