Browse > Article
http://dx.doi.org/10.4014/mbl.1511.11005

Antipathogenic Activity of Bacillus amyloliquefaciens Isolated from Korean Traditional Rice Wine  

Sim, Hyunsu (Department of Food Science and Biotechnology, Kangwon National University)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.1, 2016 , pp. 98-105 More about this Journal
Abstract
The presence of bacterial strains showing antagonistic activity to common pathogens found in a variety of fermented foods in Korea was explored. A bacterium inhibiting the growth of pathogens such as Aspergillus terreus (KCTC6178), A. flavus (KCTC6984), Staphylococcus aureus (KCCM12214), Escherichia coli O157:H7 (KCCM40406), Bacillus cereus (KCTC1012), Cryptococcus neoformans (ATCC208821), Salmonella typhimurium (ATCC19430), and Listeria monocytogenes (KCTC3569) was isolated from Makgeolli, a Korean traditional rice wine. The strain showing high antipathogenic activity was identified as B. amyloliquefaciens based on the nucleotide sequence of the 16S ribosomal RNA gene. Compared with B. amyloliquefaciens KCTC1660, whose genome has been sequenced, the isolate exhibited significantly low activities of starch-degrading enzymes and high resistance to high temperature and low pH.
Keywords
Fermented foods; Bacillus amyloliquefaciens; antipathogenic activity; rice wine;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mounia O, Stephane C, Linda S, Monique L. 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18: 414−420.   DOI
2 Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB. 2001. Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect. Immun. 69: 2957−2963.   DOI
3 Park EH, Lee DH, Seo JH, Kim MD. 2011. Cloning and characterization of a glyoxalase I gene from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 21: 277−283.
4 Park JW, Kim BJ, Lee JW, Kim YB. 2002. Purification and characterization of a maltopentaose-producing amylase from Bacillus megaterium KSM B-404. Korean J. Microbiol. Biotechnol. 30: 352−358.
5 Ranjbariyan AR, Shams-Ghahfarokhi M, Kalantari S, Razzaghi-Abyaneh M. 2011. Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iran J. Microbiol. 3: 140−146.
6 Rohmer L, Hocquet D, Miller SI. 2011. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 19: 341−348.   DOI
7 Ruckert C, Blom J, Chen X, Reva O, Borriss R. 2011. Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Biotechnol. 155: 78−85.   DOI
8 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406−425.
9 Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML. 2008. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104: 1067−1074.   DOI
10 Victor C. 1976. Uses and abuses of Duncan’s multiple range test. Proc. Fla. Slate Hort. Soc. 89: 251−253.
11 Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181−187.   DOI
12 Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955−963.   DOI
13 Chae GP, Makoto S, Hiroshi K. 1990. Suppressive effect of Bacillus subtilis and it’s products on phytopathogenic microorganisms. J. Ferment. Bioeng. 69: 1−7.   DOI
14 Anzai Y, Kudo Y, Oyaizu H. 1997. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int. J. Syst. Bacteriol. 47: 249−251.   DOI
15 Benitez LB, Velho RV, Lisboa MP, Medina LF, Brandelli A. 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791−797.   DOI
16 Borgiat PT, Campbell LL. 1978. α-Amylase from five strains of Bacillus amyloliquefaciens:evidence for identical primary structures. J. Bacteriol. 134: 389−393.
17 Choi DH, Park EH, Kim MD. 2014. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Korean J. Microbiol. Biotechnol. 42: 407−412.   DOI
18 Claudio TS, Anne MW, Leonard WM, Roger M, Arnold S, Ariana B, et al. 2002. Sequencing of 16S rRNA Gene: a rapid tool for identification of Bacillus anthracis. Emerg. Infect. Dis. 8: 1117−1123.   DOI
19 Davis ND. 1981. Sterigmatocystin and other mycotoxins produced by Aspergillus species. Food. Prot. 44: 711−714.   DOI
20 Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SA. 2013. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus 2: 154−165.   DOI
21 Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM. 2011. Mig1 is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fungal. Genet. Biol. 48: 904−913.   DOI
22 Ghisalberti EL. 2000. Bioactive metabolites from soilborne fungi: natural fungicides and biocontrol agents. Stud. Nat. Prod. Chem. 21: 181−250.
23 Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, et al. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097−2109.   DOI
24 Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, et al. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084−1096.   DOI
25 Liu J, Zhou T, He D, Li XZ, Wu H, Liu W, et al. 2011. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J. Mol. Microbiol. Biotechnol. 20: 43−52.   DOI
26 Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella MT, Olaizola C, et al. 2004. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8: 39−45.   DOI
27 Maget-Dana R, Peypoux F. 1994. Iturins, a special class of poreforming lipopeptides: biological and physicochemical properties. Toxicology 87: 151−174.   DOI
28 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426−428.   DOI
29 Moreno OJ, Kang MS. 1999. Aflatoxins in maize: The problem and genetic solutions. Plant breeding 118: 1−16.   DOI