Browse > Article
http://dx.doi.org/10.4014/mbl.1511.11010

Enhancement of Sepiapterin Production in Recombinant Escherichia coli by Coexpression of the Genes for Guanosine Triphosphate(GTP) Biosynthesis  

Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University)
Lee, Won-Heong (Department of Bioenergy Science and Technology, Chonnam National University)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.1, 2016 , pp. 55-61 More about this Journal
Abstract
Sepiapterin, a precursor for tetrahydrobiopterin, is produced in higher mammals using guanosine triphosphate (GTP) as a biosynthetic intermediate. Four genes involved in GTP biosynthesis, namely those of guanosine monophosphate kinase (gmk), nucleoside diphosphate kinase (ndk), guanosine phosphate synthetase (guaA), and inosine-5'-monophosphate dehydrogenase (guaB), were expressed in sepiapterin-producing recombinant Escherichia coli BL21(DE3) to increase intracellular GTP concentration and to improve sepiapterin production concomitantly. Coexpression of gmk, ndk, guaA, and guaB, doubled the intracellular GTP concentration and increased the maximum sepiapterin concentration up to $126.1{\pm}19.3mg/l$ (an increase of 43% compared with control cells) in batch-cultivated recombinant E. coli.
Keywords
Sepiapterin; Escherichia coli; guanosine triphosphate(GTP); coexpression;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Almaula N, Lu Q, Delgado J, Belkin S, Inouye M. 1995. Nucleoside diphosphate kinase from Escherichia coli. J. Bacteriol. 177: 2524−2529.   DOI
2 Barford PA, Blair JA, Eggar C, Hamon C, Morar C, Whitburn SB. 1984. Tetrahydrobiopterin metabolism in the temporal lobe of patients dying with senile dementia of Alzheimer type. J. Neurol. Neurosurg. Psychiatry 47: 736−738.   DOI
3 Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453−1462.   DOI
4 Gentry BG, Gentry SN, Jackson TL, Zemlicka J, Drach JC. 2011. Phosphorylation of antiviral and endogenous nucleotides to diand triphosphates by guanosine monophosphate kinase. Biochem. Pharmacol. 81: 43−49.   DOI
5 Cho YR, Kim SH, Ko HY, Kim MD, Choi SW, Seo DW. 2011. Sepiapterin inhibits cell proliferation and migration of ovarian cancer cells via down-regulation of p70S6K-dependent VEGFR-2 expression. Oncol. Rep. 26: 861−867.
6 Curtius HC, Müldner H, Niederwieser A. 1982. Tetrahydrobiopterin: efficacy in endogenous depression and Parkinson's disease. J. Neural Trans. 55: 301−308.   DOI
7 Frye RE, Huffman LC, Elliott GR. 2010. Tetrahydrobiopterin as a novel therapeutic intervention for autism. Neurotherapeutics 7: 241−249.   DOI
8 Kwon NS, Nathan CF, Stuehr DJ. 1989. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J. Biol. Chem. 264: 20496−20501.
9 Ledesma-Amaro R, Serrano-Amatriain C, Jiménez A, Revuelta JL. 2015. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. Microbial. Cell Fact. 14: 163.   DOI
10 Lee WH, Han NS, Park YC, Seo JH. 2009. Modulation of guanosine 5'-diphosphate-D-mannose metabolism in recombinant Escherichia coli for production of guanosine 5'-diphosphate-L-fucose. Bioresour. Technol. 100: 6143−6148.   DOI
11 Lee WH, Shin SY, Kim MD, Han NS, Seo JH. 2012. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-Lfucose production in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 93: 2327−2334.   DOI
12 Legrand M, Kandil A, Payen D, Ince C. 2011. Effects of sepiapterin infusion on renal oxygenation and early acute renal injury after suprarenal aortic clamping in rats. J. Cardiovasc. Pharmacol. 58: 192−198.   DOI
13 Nagatsu T, Levitt M, Udenfriend S. 1964. Tyrosine hydroxylase the initial step in norepinephrine biosynthesis. J. Biol. Chem. 239: 2910−2917.
14 Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X. 2014. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb. Cell Fact. 13: 104.
15 Maniatis T, Fritsch EF, Sambrook J. 1982. Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
16 Mantsala P, Zalkin H. 1992. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J. Bacteriol. 174: 1883−1890.   DOI
17 Park EH, Lee WH, Jang MH, Kim MD. 2015. Optimization of expression conditions enhances production of sepiapterin, a precursor for tetrahydrobiopterin biosynthesis, in recombinant Escherichia coli. J. Microbiol. Biotechnol. 25: 1709−1713.   DOI
18 Steinerstauch P, Wermuth B, Leimbacher W, Curtius HC. 1989. Human liver 6-pyruvoyl tetrahydropterin reductase is biochemically and immunologically indistinguishable from aldose reductase. Biochem. Biophys. Res. Commun. 164: 1130−1136.   DOI
19 Rubio I, Pusch R, Wetzker R. 2004. Quantification of absolute Ras-GDP/GTP levels by HPLC separation of Ras-bound [(32)P]-labelled nucleotides. J. Biochem. Biophys. Methods. 58: 111−117.   DOI
20 Sambrook J, Russell DW. 2001. Molecular cloing. Cold Spring Harbor Laboratory Press, New York.
21 Thöny B, Auerbach G, Blau N. 2000. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 1: 1−16.
22 Tietz A, Lindberg M, Kennedy EP. 1964. A New pteridine-requiring enzyme system for the oxidation of glyceryl ethers. J. Biol. Chem. 239: 4081−4090.
23 van Amsterdam JG, Opperhuizen A. 1999. Nitric oxide and biopterin in depression and stress. Psychiatry Res. 85: 33−38.   DOI
24 Woo HJ, Kang JY, Choi YK, Park YS. 2002. Production of sepiapterin in Escherichia coli by coexpression of cyanobacterial GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase. Appl. Environ. Microbiol. 68: 3138−3140.   DOI
25 Yamamoto K, Kataoka E, Miyamoto N, Furukawa K, Ohsuye K, Yabuta M. 2003. Genetic engineering of Escherichia coli for production of tetrahydrobiopterin. Metab. Eng. 5: 246−254.   DOI