Browse > Article
http://dx.doi.org/10.4014/mbl.1505.05002

Growth Rate and Antimicrobial Activity of Lactobacillus plantarum Reacting with Bacterial Culture Supernatant  

Ha, Eun-Mi (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu)
Publication Information
Microbiology and Biotechnology Letters / v.43, no.3, 2015 , pp. 187-194 More about this Journal
Abstract
In this study, L. plantarum, when reacting with the culture media of potential pathogenic bacteria, exhibited an increase in growth rate and antimicrobial activity. In order to examine the characteristics and the nature of the reaction with the bacteria, this study carried out experiments involving culturing the test bacteria in M9 minimal media. Subsequently, the supernatant was incrassated by the decompression-drying method. Through colony forming unit assay, it was confirmed that L. plantarum had the function of growth inhibition to various bacteria. After culturing L. plantarum with bacterial media, the growth rate of L. plantarum was measured by absorbance (OD600), the results showed that the growth rate (E. coli treatment group: OD600 = 0.848, S. typhimurium treatment group: OD600 = 0.848) increased, as compared with the non-treated control group (OD600 = 0.48). In contrast, the concentrate itself did not induce the growth of L. plantarum. These results were observed as a universal phenomenon of the Lactobacillus species. Moreover, the increase in antimicrobial activity was observed in L. plantarum, which reacted with the culture media of E. coli and S. typhimurium, through a disc diffusion assay, and the result of growth inhibition against various bacteria was induced. Finally, based on the analysis results of the characteristics of bacteria culture media, which increased the growth rate of L. plantarum and antibacterial activity, the bacterial media had a tolerance for catabolic enzymes, pH 2−8 and heat. Therefore, this substance can be said to be a small molecule which is highly stable under various conditions.
Keywords
Lactobacillus plantarum; growth rate; antimicrobial activity; pathogen; M9 minimal media;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nowrouzian FL, Dauwalder O, Meugnier H, Bes M, Etienne J, Vandenesch F, et al. 2011. Adhesin and superantigen genes and the capacity of Staphylococcus aureus to colonize the infantile gut. J. Infect. Dis. 204: 714−721.   DOI
2 O’Connor EM, O’Herlihy EA, O’Toole PW. 2014. Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proc. Nutr. Soc. 73: 441−451.   DOI
3 Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 2007. Development of the human infant intestinal microbiota. PLoS Biol. 5: e177.   DOI
4 Parassol N, Freitas M, Thoreux K, Dalmasso G, BourdetSicard R, Rampal P. 2005. Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res. Microbiol. 156: 256−262.   DOI
5 Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. 2007. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study. Gut 56: 661−667.   DOI
6 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59−65.   DOI
7 Rautava S, Isolauri E. 2002. The development of gut immune responses and gut microbiota: effects of probiotics in prevention and treatment of allergic disease. Curr. Issues Intest. Microbiol. 3: 15−22.
8 Kelly D, King T, Aminov R. 2007. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. 622: 58−69.   DOI
9 Klancnik A, Piskernik S, Jersek B, Mozina SS. 2010. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 81: 121−126.   DOI
10 Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA. 108 Suppl 1: 4578−4585.   DOI
11 Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, et al. 2007. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Aallergy Clin. Immunol. 119: 192−198.   DOI
12 Luyer MD, Buurman WA, Hadfoune M, Speelmans G, Knol J, Jacobs JA, et al. 2005. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect. Immun. 73: 3686−3692.   DOI
13 Mackie RI, Sghir A, Gaskins HR. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69: 1035S−1045S.   DOI
14 Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, et al. 2001. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121: 580−591.   DOI
15 Magne F, Abely M, Boyer F, Morville P, Pochart P, Suau A. 2006. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol. Ecol. 57: 128−138.   DOI
16 Fukuda S, Ishikawa H, Koga Y, Aiba Y, Nakashima K, Cheng L, et al. 2004. Allergic symptoms and microflora in schoolchildren. J. Adolesc. Health : official publication of the Society for Adolescent Medicine 35: 156−158.   DOI
17 Hooper LV, Macpherson AJ. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature reviews. Immunology 10: 159−169.
18 Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR. 2001. Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 48: 503−507.   DOI
19 Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS, Panigrahi P. 1999. Stool microflora in extremely low birthweight infants. Arch. Dis. Child. Fetal Neonatal. Ed. 80: F167−173.   DOI
20 Gronlund MM, Lehtonen OP, Eerola E, Kero P. 1999. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediatr. Gastroenterol. Nutr. 28: 19−25.   DOI
21 Hooper LV, Midtvedt T, Gordon JI. 2002. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22: 283−307.   DOI
22 Iebba V, Aloi M, Civitelli F, Cucchiara S. 2011. Gut microbiota and pediatric disease. Dig. Dis. 29: 531−539.   DOI
23 Kalliomaki M, Isolauri E. 2002. Pandemic of atopic diseases-- a lack of microbial exposure in early infancy? Current drug targets. Infectious Disorders 2: 193−199.
24 Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Aallergy Clin. Immunol. 107: 129−134.   DOI
25 Bjorksten B, Naaber P, Sepp E, Mikelsaar M. 1999. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clinical and experimental allergy. J. Allergy Clin. Immunol. 29: 342−346.
26 Dupaul-Chicoine J, Dagenais M, Saleh M. 2013. Crosstalk between the intestinal microbiota and the innate immune system in intestinal homeostasis and inflammatory bowel disease. Inflam. Bowel Dis. 19: 2227−2237.   DOI
27 Blakey JL, Lubitz L, Barnes GL, Bishop RF, Campbell NT, Gillam GL. 1982. Development of gut colonisation in pre-term neonates. J. Med. Microbiol. 15: 519−529.   DOI
28 Butel MJ, Suau A, Campeotto F, Magne F, Aires J, Ferraris L, et al. 2007. Conditions of bifidobacterial colonization in preterm infants: a prospective analysis. J. Pediatr Gastroenterol. Nutr. 44: 577−582.   DOI
29 Duncan SH, Flint HJ. 2013. Probiotics and prebiotics and health in ageing populations. Maturitas 75: 44−50.   DOI
30 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science. 308: 1635−1638.   DOI
31 Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, et al. 2010. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6: e1001097.   DOI
32 Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, et al. 2011. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157: 1385−1392.   DOI
33 Tremaroli V, Backhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489: 242−249.   DOI
34 Sanz Y. 2011. Gut microbiota and probiotics in maternal and infant health. Am. J. Clin. Nutr. 94: 2000S−2005S.   DOI
35 Thum C, Cookson AL, Otter DE, McNabb WC, Hodgkinson AJ, Dyer J. et al. 2012. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract? J. Nutr. 142: 1921−1928.   DOI
36 Toward R, Montandon S, Walton G, Gibson GR. 2012. Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 3: 57−60.   DOI
37 Wagner CL, Taylor SN, Johnson D. 2008. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin. Rev. Allergy Immunol. 34: 191−204.   DOI
38 Westerbeek EA, van den Berg A, Lafeber HN, Knol J, Fetter WP, van Elburg RM. 2006. The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin. Nutr. 25: 361−368.   DOI
39 Matsumoto T, Furuya N, Tateda K, Miyazaki S, Ohno A, Ishii Y. et al. 1999. Effect of passive immunotherapy on murine gutderived sepsis caused by Pseudomonas aeruginosa. J. Med. Microbiol. 48: 765−770.   DOI