Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4009

Isolation and Characterization of Nicotine-Degrading Bacterium Arthrobacter sp. NU11 and NU15  

Jeong, Yeonju (Department of Microbiology, Chungbuk National University)
Oh, Ji-Sung (Department of Microbiology, Chungbuk National University)
Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.50, no.1, 2014 , pp. 67-72 More about this Journal
Abstract
Minimal broth containing nicotine as a sole carbon source (MB/N) was used to isolate novel nicotine-degrading bacterial strains from tobacco plants and field soils. Comparative analysis of 16S rRNA gene sequence, phenotypic test and morphological tests showed that the position of these isolates were in the genus Arthrobacter of the family Micrococcaceae. The highest 16S rRNA gene sequence similarity of the isolate NU11 and NU15 to type strains in the genus Arthrobacter were Arthrobacter equi (98.2%) which was presumably a novel strain and Arthrobacter nicotinovorans (99.8%), respectively. Both strain NU11 and NU15 showed rod shaped, Gram-positive characteristics and catalase activity, but did not show oxidase activity. The novel strain NU11 was found to degrade efficiently nicotine in MB/N medium by the analysis of UV absorption spectra and could be used as an organism in bioremediation technique.
Keywords
Arthrobacter sp. characterization; nicotine degrading bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Solarino, B., Rosenbaum, F., Rießelmann, B., Buschmann, C.T., and Tsokos, M. 2010. Death due to ingestion of nicotine-containing solution: case report and review of the literature. Forensic. Sci. Int. 195, e19-e22.   DOI   ScienceOn
2 Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standard. Microbiol. Today 33, 152-155.
3 Wang, S.N., Liu, Z., Tang, H.Z., Meng, J., and Xu, P. 2007. Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology 153, 1556-1565   DOI   ScienceOn
4 Mayer, B. 2014. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol. 88, 5-7.   DOI   ScienceOn
5 Kodama, Y., Yamamoto, H., Amano, N., and Amachi, T. 1992. Reclassification of two strains of Arthrobacter oxydans and proposal of Arthorobacter nicotinovorans sp. nov. Int. J. Syst. Bacteriol. 42, 233-239.
6 Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: Integrate software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163.   DOI   ScienceOn
7 Meng, X.J., Lu, L.L., Gu, G.F., and Xiao, M. 2010. A novel pathway for nicotine degradation by Aspergillus oryzae 112822 isolated from tobacco leaves. Res. Microbiol. 161, 626-633.   DOI   ScienceOn
8 Novotny, T. and Zhao, F. 1999. Consumption and production waste: another externality of taboacco use. Tob. Control 8, 75-80.   DOI
9 Okamoto, M., Kita, T., Okuda, H., Tanaka, T., and Nakashima, T. 1994. Effects of aging on acute toxicity of nicotine in rats. Pharmacol. Toxicol. 75, 1-6.
10 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
11 Shoji, T., Yamada, Y., and Hashimoto, T. 2000. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol. 42, 831-839.
12 Chen, C., Li, X., Yang, J., Gong, X., Li, B., and Zhang, K.Q. 2008. Isolation of nicotine-degrading bacterium Pseudomonas sp. Nic22, and its potential application in tobacco processing. Int. Biodet. Biodegr. 62, 226-231.   DOI
13 Andersen, R.A., Fleming, P.D., Burton, H.R., Hamilton-Kemp, T.R., and Sutton, T.G. 1991. Nitrosated, acylated, and oxidized pyridine alkaloids during storage of smokeless tobaccos: Effects of moisture, temperature, and their interactions 1. J. Agric. Food Chem. 39, 1280-1287.   DOI
14 Armstrong, D.W., Wang, X., and Ercal, N. 1998. Enantiomeric composition of nicotine in smokeless tobacco, medicinal products and commercial reagents. Chiriality 10, 587-591.   DOI
15 Brandsch, R. 2006. Microbiology and biochemistry of nicotine degradation. Appl. Microbiol. Biotechnol. 69, 493-498.   DOI   ScienceOn
16 Conn, H.J. and Dimmick, I. 1947. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J. Bacteriol. 54, 291-303.
17 Jeffrey, R.N. and Eoff, W.H. 1955. Paper chromatographic method for determining alkloids in tobacco. Anal. Chem. 27, 1903-1906.   DOI
18 Croteau, R., Kutchan, T.M., and Lewis, N.G. 2000. Natural products (Secondary metabolites), pp. 1250-1318. In Buchannan, B.B., Gruissem, W., and Jones, R.L. (eds), Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, USA.
19 Giovannozzi-Sermanni, G. 1959. Arthrobacter nicotianae, a new type of Arthrobacter causing nicotine degradation. Coersta 3, 2595.
20 Gong, X.W., Yang, J.K., Duan, Y.Q., Dong, J.Y., Zhe, W., Wang, L., Li, Q.H., and Zhang, K.Q. 2009. Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Res. Microbiol. 160, 200-204.   DOI   ScienceOn
21 Katoh, A., Ohii, H., Inai, K., and Hashimoto, T. 2005. Molecular regulation of nicotine biosynthesis. Plant Biotechnol. 22, 389-392.   DOI   ScienceOn
22 Ruan, A., Min, H., Peng, X., and Huang, Z. 2005. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Res. Microbiol. 156, 700-706.   DOI   ScienceOn
23 Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., and et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int. J. Sys. Evol. Microbiol. 62, 716-721.   DOI   ScienceOn