Browse > Article
http://dx.doi.org/10.7845/kjm.2014.2054

Characteristics of Biosurfactant Producing Pseudomonas sp. HN37  

Jung, Da Hee (Department of Biological Science and Biotechnology, Hannam University)
Chang, Dong Ho (Department of Biological Science and Biotechnology, Hannam University)
Kim, Yeong Eun (Department of Biological Science and Biotechnology, Hannam University)
Jeong, Mi Rang (Department of Biological Science and Biotechnology, Hannam University)
Hahn, Kyu Woong (Department of Biological Science and Biotechnology, Hannam University)
Kim, Hyong Bai (Department of Biotechnology and Bioinformatics, Korea University)
Park, Kyeong Ryang (Department of Biological Science and Biotechnology, Hannam University)
Publication Information
Korean Journal of Microbiology / v.50, no.1, 2014 , pp. 33-39 More about this Journal
Abstract
One hundred forty four bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in Daejeon area. Among them, one bacterial strain was selected for this study based on its emulsification activity, growth rate and surface tension activity, and this selected bacterial strain was identified as Pseudomonas sp. HN37 through physiological- biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. HN37 utilize the several aliphatic hydrocarbons, 3,5-dinitrosalicylic acid and 2,4-dichlorophooxyacetic acid as a sole carbon source. And this bacterial strain showed a high resistance to antibiotics such as ampicillin and chloramphenicol, as well as heavy metals such as Ba, Cr, Li and Mn. Also, it was found that the optimal pH and temperature for the cell growth, surface tension, and emulsification activity of Pseudomonas sp. HN37 were pH 6.0-9.0 and $30^{\circ}C$, respectively. The emulsification and surface tension activity was reached the maximum to 1% (V/V) crude oil and 1% (W/V) NaCl concentration. The surface tension of the culture broth was decreased from 62 to 27 dyne/cm after fifteen hours of inoculation in LB media.
Keywords
Pseudomonas sp. HN37; biosurfactant; colony count; emulsification; surface tension;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Donio, M.B.S., Ronica, F.A., Viji, V.T., Velmurugan, S., Jenifer, J.S.C.A., Michaelbabu, M., and Citarasu, T. 2013. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus 2, 149.   DOI   ScienceOn
2 Ishigami, Y., Zhang, Y., and Ji, F. 2000. Spiculisporic acid. Functional development of biosurfactants. Chim. Oggi. 18, 32-34.
3 Jennema, G.E., McInerney, M.J., Knapp, R.M., Clark, J.B., Feero, J.M., Revus, D.E., and Menzie, D.E. 1983. A halotolerant, biosurfactantsproducing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol. 24, 485-492.
4 Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., and Marchant, R. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87, 427-444.   DOI   ScienceOn
5 Awashti, N., Kumar, A., Makkar, R., and Cameotra, S. 1999. Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. J. Environ. Sci. Heal. B. 34, 793-803.   DOI
6 Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., and Shibulal, B. 2014. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf. B. 114, 324-333.   DOI   ScienceOn
7 Appanna, V.D., Finn, H., and Pierre, M.S. 1995. Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiol. Lett. 131, 53-56.   DOI
8 Barathi, S. and Vasudevan, N. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a contaminated soil. Environ. Int. 26, 413-416.   DOI   ScienceOn
9 Cameron, D.R., Cooper, D.G., and Neufeld, R.J. 1988. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 54, 1420-1425.
10 Cappello, S., Santisi, S., Calogero, R., Hassanshahian, M., and Yakimov, M.M. 2012. Characterisation of oil-degrading bacteria isolated from Bilge Water. Water Air Soil Pollut. 223, 3219-3226.   DOI
11 Chang, D.H., Ko, E.J., and Park, K.R. 2011. Charcateristics of biosurfactant producing Pseudomonas sp. Z1. J. Life Science 21, 134-140.   과학기술학회마을   DOI   ScienceOn
12 Cirigliano, M.C. and Carman, G.M. 1984. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 50, 846-850.
13 Dibble, J.T. and Bartha, R. 1979. Effects of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37, 729-739.
14 Rahman, P.K. and Gakpe, E. 2008. Production, characterisation and applications of biosurfactants-review. Biotechnology 7, 360-370.   DOI
15 Rosenberg, E. 1993. Exploiting microbial growth on hydrocarbons - New markets. Trends Biotechnol. 11, 419-424.   DOI   ScienceOn
16 Pacwa-Plociniczak, M., Plaza, G.A., Piotrowska-Seget, Z., and Cameotra, S.S. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12, 633-654   DOI   ScienceOn
17 Pradhan, A.K., Pradhan, N., Sukla, L.B., Panda, P.K., and Mishra, B.K. 2014. Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillus fusiformis S9. Bioprocess Biosyst. Eng. 37, 139-149.   DOI   ScienceOn
18 Singh, A.K. and Cameotra, S.S. 2013. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting Rhizobacteria. Appl. Biochem. Biotechnol. 170, 1038-1056.   DOI   ScienceOn
19 Tavares, L.F., Silva, P.M., Junqueira, M., Mariano, D.C., Nogueira, F.C., Domont, G.B., Freire, M.G., and Neves, B.C. 2013. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl. Microbiol. Biotechnol. 97, 1909-1921.   DOI   ScienceOn
20 Toren, A., Navon-Venezia, S., Ron, E.Z., and Rosenberg, E. 2001. Emulsifying activity of purified alasan proteins from Acinetobacter radioresistens. Appl. Environ. Microbiol. 67, 1102-1106.   DOI   ScienceOn
21 Atlas, R.M. and Bartha, R. 1972. Biodegradation of petroleum in seawater at low temperature. Can. J. Microbiol. 18, 1851-1855.   DOI   ScienceOn
22 Krieg, N.R. and Holt, J.G. 1984. Bergey's Manual of Systematic Bacteriology. Williams, Wikins and Baltimore.
23 Lang, S. 2002. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid Inter. Sci. 7, 12-20.   DOI   ScienceOn
24 Yakimov, M.M., Timmis, K.N., Wray, V., and Fredrickson, H.L. 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706-1713.
25 Zhang, X., Xu, D., Zhu, C., Lundaa, T., and Scherr, K.E. 2012. Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem. Engineering J. 209, 138-146.   DOI   ScienceOn
26 Kim, G.J., Lee, I.S., and Park, K.R. 1999. Characteristics of waste lubricant degradation by Acinetobacter lwoffii I6C-1. J. Life Science 9, 76-81.
27 MacFaddin, J.F. 1984. Biochemical tests for identification for medical bacteria. 2nd ed., Williams and Wilkins Co., Baltimore, USA.
28 Mulkins-philips, G.J. and Stewart, T.E. 1974. Effect of environmental parameters on bacterial degradation of bunker C oil, crude oil, and hydrocarbons. Appl. Microbiol. 28, 915-922.
29 Mulligan, C.N., Gibbs, B.F., and Kosaric, N. 1993. Biosurfactantsproduction, properties, application, pp. 329-372. In Dekker, M. (ed.), New York, USA.
30 Muthusamy, K., Gopalakrishnan, S., Ravi, T.K., and Sivachidambaram, P. 2008. Biosurfactants: properties, commercial production and application. Curr. Sci. 94, 736-747.
31 Noparat, P., Maneerat, S., and Saimmai, A. 2013. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi. World J. Microbiol. Biotechnol. 30, 865-877.
32 Rosenberg, E., Rubinovitz, C., Legmann, R., and Ron, E.Z. 1988. Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl. Environ. Microbiol. 54, 323-326.
33 Van Bogaert, I.N., Holvoet, K., Roelants, S.L., Li, B., Lin, Y.C., Van de Peer, Y., and Soetaert, W. 2013. The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol. Microbiol. 88, 501-509.   DOI   ScienceOn
34 Wagner, D.B., Furnier, G.R., Saghai-Maroof, M.A., Williams, S.M., Dancik, B.P., and Allard, R.W. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad Sci. USA 84, 2097-2100.   DOI   ScienceOn
35 Walker, J.D. and Cowell, R.R. 1975. Some effects of petroleum on estuarine and marine microorganisms. Can. J. Microbiol. 21, 305-313.   DOI   ScienceOn
36 Soberon-Chavez, G. and Maier, R.M. 2011 Biosurfactants: A general overview. Biosurfactants, pp. 1-11. In Soberon-Chavez, G. (ed.), Springer-Verlag, Berlin, Germany.
37 Hong, J.J., Yang, S.M., Lee, C.H., Choi, Y.K., and Kajiuchi, T. 1998 Ultrafiltration of divalent metal cations from aqueous solution using polycarboxylic acid type biosurfactants. J. Colloid Interf. Sci. 202, 63-73.   DOI   ScienceOn