Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.2.019

Thermoreflectance Microscopy for Thermal Analysis of Electronics  

Kim, Hyeon-Beom (Department of Materials Science and Engineering, Seoul National University)
Lee, Seunghwan (Department of Materials Science and Engineering, Seoul National University)
Jang, Hyejin (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.2, 2022 , pp. 19-31 More about this Journal
Abstract
With the advent of technologies based on big data, the trend of electronics towards high performance and high integration density continues. However, this development of electronics suffers from overheating issues, which seriously threaten the reliability of the devices. To develop effective strategies for thermal management, it is crucial to accurately evaluate the temperature distribution and design the heat dissipation path within the device in the operating condition. This paper introduces thermoreflectance microscopy that can observe the temperature distribution of a device with high spatial and temporal resolutions in a non-contact way. Specifically, the working principle and various forms of thermoreflectance microscopy are presented along with the latest research trends to improve the temperature, space, and time resolutions. We further review several examples in which thermoreflectance microscopy is applied to investigate the temperature and thermal characteristics of electronic devices.
Keywords
thermoreflectance; microscopy; thermography; thermal management; microelectronics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. U. Kim, C. B. Jeong, J. D. Kim, K. S. Lee, H. Hur, K. H. Nam, G. H. Kim, and K. S. Chang, "Laser scanning confocal thermoreflectance microscope for the backside thermal imaging of microelectronic devices", Sens., vol. 17, no. 12, p. 2774, (2017).   DOI
2 M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, "CCD-based thermoreflectance microscopy: principles and applications", J. Phys. D: Appl. Phys., vol. 42, no. 14, p. 143001, (2009).   DOI
3 D. Kendig, K. Yazawa, A. Marconnet, M. Asheghi, and A. Shakouri, "Side-by-side comparison between infrared and thermoreflectance imaging using a thermal test chip with embedded diode temperature sensors", in 2012 28th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2012: IEEE, pp. 344-347, (2012).
4 T. Miyazaki and S. Adachi, 'Analysis of spectroscopic-ellipsometry and thermoreflectance spectra of Si", J. Appl. Phys., vol. 77, no. 4, pp. 1741-1746, (1995).   DOI
5 L. J. Ladani, "Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits", Microelectron. Eng., vol. 87, no. 2, pp. 208-215, (2010).   DOI
6 J. Christofferson and A. Shakouri, "Thermoreflectance based thermal microscope", Rev. Sci. Instrum., vol. 76, no. 2, p. 024903, (2005).   DOI
7 S. Grauby, A. Salhi, J.-M. Rampnoux, H. Michel, W. Claeys, and S. Dilhaire, "Laser scanning thermoreflectance imaging system using galvanometric mirrors for temperature measurements of microelectronic devices", Rev. Sci. Instrum., vol. 78, no. 7, p. 074902, (2007).   DOI
8 D. Pierscinska, K. Pierscinski, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, "CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers", Semicond. Sci. Technol., vol. 31, no. 11, p. 115006, (2016).   DOI
9 E. Koskelo, A. Radunskaya, and J. Hudgings, "Using noise to stochastically enhance the resolution of charge coupled device based thermoreflectance imaging", J. Appl. Phys., vol. 128, no. 10, p. 104502, (2020).   DOI
10 B. Vermeersch, J. Christofferson, K. Maize, A. Shakouri, and G. De Mey, "Time and frequency domain CCD-based thermoreflectance techniques for high-resolution transient thermal imaging", in 2010 26th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2010: IEEE, pp. 228-234, (2010).
11 K. Allison, M. Hallman, E. Koskelo, J. Hardin, A. Radunskaya, and J. Hudgings, "Increasing the speed of frequency-domain, homodyne thermoreflectance imaging", Rev. Sci. Instrum., vol. 91, no. 4, p. 044901, (2020).   DOI
12 A. Ziabari, P. Torres, B. Vermeersh, Y. Xuan, X. Cartoixa, A. Torello, J. H. Bahk, Y. R. Koh, M. Parsa, P. D. Ye, F. X. Alvarez, and A. Shakouri, "Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices", Nat. Commun., vol. 9, no. 1, pp. 1-7, (2018).   DOI
13 IEEE Electronics Packaging Society, "Heterogeneous Integration Roadmap 2021 Edition", IEEE, (2022) from https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
14 J. H. Pang, D. Chong, and T. Low, "Thermal cycling analysis of flip-chip solder joint reliability", IEEE Trans. Compon. Packag. Technol., vol. 24, no. 4, pp. 705-712, (2001).   DOI
15 P. M. Mayer, D. Luerssen, R. J. Ram, and J. A. Hudgings, "Theoretical and experimental investigation of the thermal resolution and dynamic range of CCD-based thermoreflectance imaging", J. Opt. Soc. Am. A, vol. 24, no. 4, pp. 1156-1163, (2007).   DOI
16 L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, "Stochastic resonance", Rev. Mod. Phys., vol. 70, no. 1, p. 223, (1998).   DOI
17 M. G. Burzo, P. L. Komarov, and P. E. Raad, "Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method", IEEE Trans. Compon. Packag. Technol., vol. 28, no. 4, pp. 637-643, (2005).   DOI
18 G. Tessier, S. Hole, and D. Fournier, "Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths", Appl. Phys. Lett., vol. 78, no. 16, pp. 2267-2269, (2001).   DOI
19 G. Tessier, M. L. Polignano, S. Pavageau, C. Filloy, D. Fournier, F. Cerutti, and I. Mica, "Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations", J. Phys. D: Appl. Phys., vol. 39, no. 19, p. 4159, (2006).   DOI
20 D. U. Kim, K. S. Park, C. B. Jeong, G. H. Kim, and K. S. Chang, "Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy", Opt. Express, vol. 24, no. 13, pp. 13906- 13916, (2016).   DOI
21 D. Kendig, G. Pavlidis, S. Graham, J. Reiter, M. Gurr, D. Altman, S. Huerster, and A. Shakouri, "UV thermal imaging of RF GaN devices with GaN resistor validation", in 2018 91st ARFTG Microwave Measurement Conference (ARFTG), 2018: IEEE, pp. 1-4, (2018).
22 W. J. Choi, S. Y. Ryu, J. K. Kim, D. U. Kim, G. H. Kim, and K. S. Chang, "High-speed thermoreflectance microscopy using charge-coupled device-based Fourier-domain filtering", Opt. Lett., vol. 38, no. 18, pp. 3581-3584, (2013).   DOI
23 K. Maize, G. Pavlidis, E. Heller, L. Yates, D. Kendig, S. Graham, and A. Shakouri, "High resolution thermal characterization and simulation of power AlGaN/GaN HEMTs using micro-Raman thermography and 800 picosecond transient thermoreflectance imaging", in 2014 IEEE Compd. Semicond. Integr. Circuit Symp., 2014: IEEE, pp. 1-8, (2014).
24 S. Lal, S. E. Clare, and N. J. Halas, "Nanoshell-enabled photothermal cancer therapy: impending clinical impact", Acc. Chem. Res., vol. 41, no. 12, pp. 1842-1851, (2008).   DOI
25 B. Hussain, B. Jalil, M. A. Pascali, M. Imran, G. Serafino, D. Moroni, and P. Ghelfi, "Thermal vulnerability detection in integrated electronic and photonic circuits using infrared thermography", Appl. Opt., vol. 59, no. 17, pp. E97-E106, (2020).   DOI
26 E. Matatagui, A. Thompson, and M. Cardona, "Thermoreflectance in semiconductors", Phys. Rev., vol. 176, no. 3, p. 950, (1968).   DOI
27 J. A. Summers, T. Yang, M. T. Tuominen, and J. A. Hudgings, "High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope", Rev. Sci. Instrum., vol. 81, no. 1, p. 014902, (2010).   DOI
28 P. E. Raad, P. L. Komarov, and M. G. Burzo, "Non-contact surface temperature measurements coupled with ultrafast real-time computation", in 2007 23rd Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2007: IEEE, pp. 57-63, (2007).
29 S. Grauby, B. Forget, S. Hole, and D. Fournier, "High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme", Rev. Sci. Instrum., vol. 70, no. 9, pp. 3603-3608, (1999).   DOI
30 D. Luerssen, J. A. Hudgings, P. M. Mayer, and R. J. Ram, "Nanoscale thermoreflectance with 10mK temperature resolution using stochastic resonance", in 2005 21st Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2005: IEEE, pp. 253-258, (2005).
31 S. Sandell, E. Chavez-Angel, A. El Sachat, J. He, C. M. Sotomayor Torres, and J. Maire, "Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures", J. Appl. Phys., vol. 128, no. 13, p. 131101, (2020).   DOI
32 D. Wang, Z. Liu, L. Zheng, and W. Liu, "A high-resolution thermoreflectance imaging technique based on visible light", in 2019 20th Int. Conf. Electron. Packag. Technol., 2019: IEEE, pp. 1-5, (2019).
33 K. Maize, A. Ziabari, W. D. French, P. Lindorfer, B. OConnell, and A. Shakouri, "Thermoreflectance CCD imaging of self-heating in power MOSFET arrays", IEEE Trans. Electron Devices, vol. 61, no. 9, pp. 3047-3053, (2014).   DOI
34 A. Ziabari, J. H. Bahk, Y. Xuan, P. D. Ye, D. Kendig, K. Yazawa, P. G. Burke, H. Lu, A. C. Gossard, and A. Shakouri, "Sub-diffraction limit thermal imaging for HEMT devices", in 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2015: IEEE, pp. 82-87, (2015).
35 C. Matei, P. Aaen, and D. Kending, "High-resolution thermoreflectance imaging of GaN power microwave transistors. invited paper", in ARMMS RF & Microwave Society, 2017: University of Surrey, (2017).
36 F. F. Oettinger, D. L. Blackburn, and S. Rubin, "Thermal characterization of power transistors", IEEE Trans. Electron Devices, vol. 23, no. 8, pp. 831-838, (1976).   DOI
37 J.-H. Bahk and A. Shakouri, "Ultra-fast thermoreflectance imaging for electronic, optoelectronic, and thermal devices", in 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2019: IEEE, pp. 1-7, (2019).
38 P. Spirito, G. Breglio, V. d'Alessandro, and N. Rinaldi, 'Thermal instabilities in high current power MOS devices: experimental evidence, electro-thermal simulations and analytical modeling", in 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No. 02TH8595), 2002, vol. 1: IEEE, pp. 23-30, (2002).
39 H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices", Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 1-11, (2011).
40 D. Shvydka, J. Rakotoniaina, and O. Breitenstein, "Lock-in thermography and nonuniformity modeling of thin-film CdTe solar cells", Appl. Phys. Lett., vol. 84, no. 5, pp. 729-731, (2004).   DOI
41 D. Wang, Y. R. Koh, Z. A. Kudyshev, K. Maize, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, and A. Shakouri, "Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance", Nano Lett., vol. 19, no. 6, pp. 3796-3803, (2019).   DOI
42 D. Kendig, J. Christofferson, G. B. Alers, and A. Shakouri, "Application of thermoreflectance imaging to identify defects in photovoltaic solar cells", in 2010 26th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2010: IEEE, pp. 245- 248, (2010).
43 K. Maize and A. Shakouri, "Transient thermal imaging using thermoreflectance", in 2008 24th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2008: IEEE, pp. 55-58, (2008).
44 Y. Zhang, W. Zhu, F. Hui, M. Lanza, T. Borca-Tasciuc, and M. Munoz Rojo, "A review on principles and applications of scanning thermal microscopy (SThM)", Adv. Funct. Mater., vol. 30, no. 18, p. 1900892, (2020).   DOI