Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.4.103

Control of Weighted Mobility Ratio to Enhance the Performance of Bi-Te-based Thermoelectric Materials  

Kim, Min Young (Department of Materials Science and Engineering, Yonsei University)
Kim, Hyun-Sik (Department of Materials Science and Engineering, Hongik University)
Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.4, 2021 , pp. 103-107 More about this Journal
Abstract
Temperature dependences of electronic and thermal transport properties of narrow band gap thermoelectric materials are dependent on the transport behavior of minority carriers as well as majority carriers. Thus, weighted mobility ratio, which is defined the ratio of weighted mobility for majority carriers to that for minority carriers, must be one of the important parameters to enhance the performance of thermoelectric materials. Herein, we provided a practical guide for the development of high-performance Bi-Te-based thermoelectric materials based on the weighted mobility ratio control by considering theoretical backgrounds related to the electronic transport phenomena in semiconductors.
Keywords
Thermoelectric; Bi-Te; Weighted mobility ratio; bipolar;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. J. Goldsmid, "Introduction to thermoelectricity", Vol. 121, p 46, Springer-Verlag, Berlin Germany (2010).
2 H. Mun, K. H. Lee, S. J. Kim, J. Y. Kim, J. H. Lee, J. H. Lim, H. J. Park, J. W. Roh and S. W. Kim, "Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3", Mater., 8(3), 959-965 (2015).   DOI
3 A. F. May, G. J. Snyder, "Introduction to modeling thermoelectric transport at high Temperatures", Materials, Preparation, and Characterization in Thermoelectrics, p 1-18, CRC Press, USA(2012).
4 G. J. Snyder and A. H. Snyder, "Figure of merit ZT of a thermoelectric device defined from materials properties", Energy Environ. Sci., 10, 2280 (2017).   DOI
5 G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7(2), 105 (2008).   DOI
6 Y. Liu, Y. Zhang, S. Ortega, M. Ibanez, K. H. Lim, A. Grau-Carbonell, S. Marti-Sanchez, K. M. Ng, J. Arbiol, M. V. Kovalenko, D. Cadavid, A. Cabot, "Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2-xTe3 nanocrystal building blocks", Nano Lett., 18, 2557 (2018).   DOI
7 M. Kim, S. I. Kim, S. W. Kim, H. S. Kim and K. H. Lee, "Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport", Adv. Mater., 33, 2005931 (2021).   DOI
8 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-Thermoelectric Performance of Nano structured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008).   DOI
9 S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics", Science, 348, 109 (2015).   DOI
10 K. Kim, G. Kim, H. Lee, K. H. Lee, W. Lee, "Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation", Scr. Mater., 145, 41 (2018).   DOI
11 G. Yang, R. Niu, L. Sang, X. Liao, D. R. G. Mitchell, N. Ye, J. Pei, J. F. Li, X. Wang, "Ultra-High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nano-Defect Architectures", Adv. Energy Mater., 10, 2000757 (2020).   DOI