Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.1.009

Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials  

Lee, Jae Hyung (Division of Materials Science and Engineering, Hanyang University)
Shin, Jae Hyeok (Division of Materials Science and Engineering, Hanyang University)
Lee, Sang Il (Division of Materials Science and Engineering, Hanyang University)
Park, Won Il (Division of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.1, 2020 , pp. 9-15 More about this Journal
Abstract
The 'field-effect' underlies the operation of most conventional electronic devices. However, effective control and implementation of the field-effect in semiconductor devices are limited due to screening of the electric-field by conducting electrodes. Thus far, the electronic devices have necessarily been designed to avoid or minimize the electric-field screening effect. As an alternative approach to this, a new type of conducting electrodes which would be transparent to both visible light and electric-field while being electrically conductive have been developed. Here, we define these electrodes as 'electric-field transparent electrodes' and provide a review on related work. Particular attention is paid to the material selection and design strategies to enhance the electric-field transparency of the electrodes while maintaining good electrical conductivity and optical transparency. We then introduce potential applications of the electric-field transparent electrodes in electronic and optoelectronic devices.
Keywords
Electric field transparent electrode; electrode; Silver nanowire; Graphene; Graphene mesh;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, and D. Yang, "An 8.68% Efficiency Chemically-Doped-Free Graphene-Silicon Solar Cell Using Silver Nanowires Network Buried Contacts", ACS applied materials & interfaces, 7(7), 4135 (2015).   DOI
2 K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, "Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures", ACS Nano, 9, 5922 (2015).   DOI
3 Y. Liu, J. Guo, E. Zhu, P. Wang, V. Gambin, Y. Huang, and X. Duan, "Maximizing the Current Output in Self-Aligned Graphene-InAs-Metal Vertical Transistors", ACS Nano, 13, 847 (2019).   DOI
4 Y. Yang, X. Yang, X. Zou, S. Wu, D. Wan, A. Cao, L. Liao, Q. Yuan, and X. Duan, "Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors", Adv. Funct. Mater., 27, 1604096 (2017).   DOI
5 Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, "Role of Interfacial Oxide in High-Efficiency Graphene-Silicon Schottky Barrier Solar Cells", Nano Lett., 15, 2104 (2015).   DOI
6 O. Vazquez-Mena, J. P. Bosco, O. Ergen, H. I. Rasool, A. Fathalizadeh, M. Tosun, M. Crommie, A. Javey, H. A. Atwater, and A. Zettl, "Performance Enhancement of a Graphene- Zinc Phosphide Solar Cell Using the Electric Field-Effect", Nano Lett., 14, 4280 (2014).   DOI
7 S. Kim, S. Ju, J. H. Back, Y. Xuan, P. D. Ye, M. Shim, D. B. Janes, and S. Mohammadi, "Fully Transparent Thin-Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes", Adv. Mater., 21, 564 (2009).   DOI
8 W. Regan, S. Byrnes, W. Gannett, O. Ergen, O. Vazquez- Mena, F. Wang, and A. Zettl, "Screening-Engineered Field- Effect Solar Cells", Nano Lett., 12, 4300 (2012).   DOI
9 S. H. Kim, J. H. Lee, J. S. Park, M. S. Hwang, H. G. Park, K. J. Choi, and W. I. Park, "Performance optimization in gatetunable Schottky junction solar cells with a light transparent and electric-field permeable graphene mesh on n-Si", J. Mater. Chem. C., 5, 3183 (2017).   DOI
10 C. J. Shih, R. Pfattner, Y. C. Chiu, N. Liu, T. Lei, D. Kong, Y. Kim, H. H. Chou, W. G. Bae, and Z. Bao, "Partially- Screened Field Effect and Selective Carrier Injection at Organic Semiconductor/Graphene Heterointerface", Nano Lett., 15, 7587 (2015).   DOI
11 M. K. Petterson, M. G. Lemaitre, Y. Shen, P. Wadhwa, J. Hou, S. V. Vasilyeva, I. I. Kravchenko, and A. G. Rinzler, "On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell", ACS applied materials & interfaces, 7(38), 21182 (2015).   DOI
12 J. S. Yi, D. H. Lee, W. W. Lee, and W. I. Park, "Direct Synthesis of Graphene Meshes and Semipermanent Electrical Doping", J. Phys. Chem., 4, 2099 (2013).
13 H. Yu, Z. Dong, J. Guo, D. Kim, and F. So, "Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications", ACS applied materials & interfaces, 8(16), 10430 (2016).   DOI
14 M. A. McCarthy, B. Liu, and A. G. Rinzler, "High Current, Low Voltage Carbon Nanotube Enabled Vertical Organic Field Effect Transistors", Nano Lett., 10, 3467 (2010).   DOI
15 J. Y. Kim, B. G. Kim, Y. K. Lee, J. H. Kim, D. H Woo, S. Y. Kwon, D. G. Lim, and J. H. Park, "Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering", J. Microelectron. Packag. Soc., 17(1), 19 (2010).
16 W. H. Baek, M. Choi, T. S. Yoon, H. H. Lee, and Y. S. Kim, "Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells", Appl. Phys. Lett., 96, 133506 (2010).   DOI
17 B. J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., 20(4), 1 (2013).   DOI
18 D. G. Kim, Y. M. Kim, and J. W Kim, "Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible.Stretchable Electronics", J. Microelectron. Packag. Soc., 22(1), 7 (2015).   DOI
19 J. H. Kim, M. W. Chon, and S. H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices", J. Microelectron. Packag. Soc., 21(2), 1 (2014).   DOI
20 A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, and N. Tessler, "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates", Appl. Phys. Lett., 95, 213301 (2009).   DOI
21 M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, "Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes", Adv. Mater., 20, 4408 (2008).   DOI
22 M. A. McCarthy, B. Liu, R. Jayaraman, S. M. Gilbert, D. Y. Kim, F. So, and A. G. Rinzler, "Reorientation of the High Mobility Plane in Pentacene-Based Carbon Nanotube Enabled Vertical Field Effect Transistors", ACS Nano, 5, 291 (2011).   DOI
23 K. Lopata, R. Thorpe, S. Pistinner, X. Duan, and D. Neuhauser, "Graphene nanomeshes: Onset of conduction band gaps", Chem. Phys. Lett., 498, 334 (2010).   DOI
24 J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, "Graphene nanomesh", Nat. Nanotechnol., 5, 190 (2010).   DOI
25 H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim, "Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier", Science, 336, 1140 (2012).   DOI
26 S. Liu, S. Ho, and F. So, "Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes", ACS applied materials & interfaces, 8, 9268 (2016).   DOI
27 B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, and A. G. Rinzler, "Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors", Adv. Mater., 20, 3605 (2008).   DOI
28 X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, "High Efficiency Graphene Solar Cells by Chemical Doping", Nano Lett., 12, 2745 (2012).   DOI
29 P. Wadhwa, B. Liu, M. A. McCarthy, Z. Wu, and A. G. Rinzler, "Electronic Junction Control in a Nanotube-Semiconductor Schottky Junction Solar Cell", Nano Lett., 10, 5001 (2010).   DOI
30 P. Wadhwa, G. Seol, M. K. Petterson, J. Guo, and A. G. Rinzler, "Electrolyte-Induced Inversion Layer Schottky Junction Solar Cells", Nano Lett., 11, 2419 (2011).   DOI
31 X. Yu, L. Yang, Q. Lv, M. Xu, H. Chen, and D. Yang, "The enhanced efficiency of graphene-silicon solar cells by electric field doping", Nanoscale, 7, 7072 (2015).   DOI