Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.2.0023

Chemically Bonded Thermally Expandable Microsphere-silica Composite Aerogel with Thermal Insulation Property for Industrial Use  

Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University)
Phadtare, Varsha D. (Department of Materials Science and Engineering, Yonsei University)
Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University)
Moon, Seung Hwan (Enterprise Research Institute, Eslin Corporation)
Kim, Jong Il (Enterprise Research Institute, Eslin Corporation)
Bae, Young Kwang (Enterprise Research Institute, Eslin Corporation)
Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.2, 2019 , pp. 23-29 More about this Journal
Abstract
Thermally expandable microsphere and aerogel composite was prepared by chemical compositization. Microsphere can produce synergies with aerogel, especially an enhancement of mechanical property. Through condensation between sulfonated microsphere and hydrolyzed silica sol, chemically-connected composite aerogel could be prepared. The presence of hydroxyl group on the sulfonated microsphere was observed, which was the prime functional group of reaction with hydrolyzed silica sol. Silica aerogel-coated microsphere was confirmed through microstructure analysis. The presence of silicon-carbon absorption band and peaks from composite aerogel was observed, which proved the chemical bonding between them. A relatively low thermal conductivity value of $0.063W/m{\cdot}K$ was obtained.
Keywords
Thermally expandable microsphere; aerogel; organic-inorganic; composites; insulator;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Z.-L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.-Y. Ma, W.-Y. Xing, C. Qiao, L. Bergstrom, M. Antonietti, and S.-H. Yu, "Fire-retardant and thermally insulating phenolic-silica aerogels", Angew. Chem. Int. Ed., 57(17), 4538 (2018).   DOI
2 Y. Lei, X. Chen, H. Song, Z. Hu, and B. Cao, "Improvement of thermal insulation performance of silica aerogels by $Al_2O_3$ powders doping", Ceram. Int., 43(14), 10799 (2017).   DOI
3 T. Feczko, L. Trif, and D. Horak, "Latent heat storage by silica-coated polymer beads containing organic phase change materials", Sol. Energy, 132, 405 (2016).   DOI
4 L. M. Sanz-Moral, A. Aho, N. Kumar, K. Eranen, M. Peurla, J. Peltonen, D. Y. Murzin, and T. Salmi, "Synthesis and characterization Ru-C/$SiO_2$ aerogel catalysts for sugar hydrogenation reactions", Catal. Lett., 148, 3514 (2018).   DOI
5 G. Vamvounis, M. Jonsson, E. Malmstrom, A. Hult, "Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres", Eur. Polym. J., 49, 1503 (2013).   DOI
6 S. Ries, A. Spoerrer, and V. Altstaedt, "Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams", Proc. AIP Conf., 1593(1), 401 (2014).
7 S.-Y. Chen, Z.-C. Sun, L.-H. Li, Y.-H. Xiao, and Y.-M. Yu, "Preparation and characterization of conducting polymercoated thermally expandable microspheres", Chin. Chem. Lett., 28, 658 (2017).   DOI
8 M. Jonsson, D. Nystrom, O. Nordin, and E. Malmstrom, "Surface modification of thermally expandable microspheres by grafting poly(glycidyl methacrylate) using ARGET ATRP", Eur. Polym. J., 45, 2374 (2009).   DOI
9 A. Schmid, L. R. Sutton, S. P. Armes, P. S. Bain, and G. Manfre, "Synthesis and evaluation of polypyrrole-coated thermally-expandable microspheres: an improved approach to reversible adhesion", Soft Matter, 5(2), 407 (2009).   DOI
10 J. F. Illescas, and M. J. Mosquera, "Producing surfactant-synthesized nanomaterials in situ on a building substrate, without volatile organic compounds", ACS Appl. Mater. Interfaces., 4(8), 4259 (2012).   DOI
11 C. Zhang, C. Zhang, R. Huang, and X. Gu, "Effects of hollow microspheres on the thermal insulation of polysiloxane foam", J. Appl. Polym. Sci., 134(18), 44778 (2017).
12 H. E. Cingil, J. A. Balmer, S. P. Armes, and P. S. Bain, "Conducting polymer-coated thermally expandable microspheres", Polym. Chem., 1(8), 1323 (2010).   DOI
13 S. Grama, Z. Plichta, M. Trchova, J. Kovarova, M. Benes, and D. Horak, "Monodisperse macroporous poly(glycidyl methacrylate) microspheres coated with silica: design, preparation and characterization", React. Funct. Polym., 77, 11 (2014).   DOI
14 H. Aglan, S. Shebl, M. Morsy, M. Calhoun, H. Harding, and M. Ahmad, "Strength and toughness improvement of cement binders using expandable thermoplastic microspheres", Constr. Build. Mater., 23(8), 2856 (2009).   DOI
15 Y. Lu, J. Broughton, and P. Winfield, "Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive", Int. J. Adhes. Adhes., 66, 33 (2016).   DOI
16 M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, "Thermally expandable microspheres with excellent expansion characteristics at high temperature", Journal of applied polymer science, 117(1), 384 (2010).   DOI
17 N. Husing, and U. Schubert, "Aerogels - airy materials: chemistry, structure, and properties", Angew. Chem., Int. Ed., 37, 22 (1998).   DOI
18 S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, and N. Leventis, "Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization", Chem. Mater., 20, 5035 (2008).   DOI
19 X. Hu, K. Littrel, S. Ji, D. G. Pickles, and W. M. Risen, "Characterization of silica-polymer aerogel composites by small-angle neutron scattering and transmission electron microscopy", J. Non-Cryst. Solids., 288, 184 (2001).   DOI
20 Z. Li, X. Cheng, S. He, D. Huang, H. Bi, and H. Yang, "Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration", Mater. Lett., 129, 12 (2014).   DOI
21 D. B. Mahadik, H.-N.-R. Jung, Y. K. Lee, K.-Y. Lee, and H.-H. Park, "Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process", J. Microelectron. Packag. Soc., 23(1), 35 (2016).   DOI
22 K.-Y. Lee, H.-N.-R. Jung, D. B. Mahadik, and H.-H. Park, "Characterization of mechanical property change in polymer aerogels depending on the ligand structure of acrylate monomer", J. Microelectron. Packag. Soc., 23(3), 1 (2016).   DOI
23 H.-Y. Nah, H.-N.-R. Jung, K.-Y. Lee, Y. S. Ku, and H.-H. Park, "Effect of acid catalyst kinds on the pore structural characteristics of water glass based silica aerogel", J. Microelectron. Packag. Soc., 24(3), 13 (2017).   DOI
24 Y. Kim, T. Kim, J. G. Shim, and H.-H. Park, "The effect of acetonitrile on the texture properties of sodium silicate based silica aerogels", J. Microelectron. Packag. Soc., 25(4), 143 (2018).   DOI
25 H. M. Kim, Y. J. Noh, J. Yu, S. Y. Kim, and J .R. Youn, "Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution", Compos. Pt. A-Appl. Sci. Manuf., 75, 39 (2015).   DOI
26 D. Ge, L. Yang, Y. Li, and J. Zhao, "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", J. Non-Cryst. Solids., 355, 2610 (2009).   DOI
27 N. Kuthirummal, A. Dean, C. Yao, and W. Risen, "Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(3), 700 (2008).   DOI
28 J. T. Seo, S. M. Ma, Q. Yang, L. Creekmore, H. Brown, R. Battle, K. Lee, A. Jackson, T. Skyles, B. Tabibi, K. P. Yoo, S. Y. Kim, S. S. Jung, and M. Namkung, "Large optical nonlinearity of highly porous silica nanoaerogels in the nanosecond time domain", J. Korean Phys. Soc., 48, 1395 (2006).
29 A. Stojanovic, S. Zhao, E. Angelica, W. J. Malfait, and M. M. Koebel, "Three routes to superinsulating silica aerogel powder", J. Sol-Gel Sci. Technol., 90(1), 57 (2019).   DOI
30 H. M. Kim, H. S. Kim, S. Y. Kim, and J. R. Youn, "Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity", e-Polymers, 15(2), 111 (2015).   DOI
31 P. Alves, J. F. J. Coelho, J. Haack, A. Rota, A. Bruinink, and M. H. Gil, "Surface modification and characterization of thermoplastic polyurethane", Eur. Polym. J., 45, 1412 (2009).   DOI
32 M. Ochoa, A. Lamy-Mendes, A. Maia, A. Portugal, and L. Duraes, "Influence of structure-directing additives on the properties of poly(methylsilsesquioxane) aerogel-like materials", Gels, 5(1), 6 (2019).   DOI
33 K.-Y. Lee, H,-Y, Nah, H, Choi, V, G. Parale, and H.-H. Park, "Methyltrimethoxysilane silica aerogel composite with carboxyl-functionalised multi-wall carbon nanotubes", Int. J. Nanotechnol., 15(6-7), 587 (2018).   DOI
34 H. Lee, D. Lee, J. Cho, Y.-O. Kim, S. Lim, S. Youn, Y.-C. Jung, S.-Y. Kim, and D.-G. Seong, "Super-insulating, flameretardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel", Compos. Pt. A-Appl. Sci. Manuf., 123, 108 (2019).   DOI