Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.3.049

Durability of Nano-/micro- Pt Line Patterns Formed on Flexible Substrate  

Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Choi, Young Joong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.3, 2018 , pp. 49-53 More about this Journal
Abstract
Since various methods to form well-aligned nano-/micro- patterns are underlying technologies to fabricate next generation wearable electronic devices, many efforts have been made to realize finer patterns in recent years. Among lots of patterning methods, the present invention includes a nano-transfer printing (n-TP) process which is advantageous in that a processing cost is low and high-resolution patterns can be formed within a short processing time. We successfully achieved pattern formation of highly ordered Pt lines with line-width of 250 nm, 500 nm, and $1{\mu}m$ on transparent and flexible substrates. In addition, we analyzed the durability of the patterns, showing excellent stability of line-shape even after a physical and repeated bending test of 500 times using a bending machine. As a result, it is expected that a n-TP process is very useful for forming various metal patterns, and it is also expected to be applied to wiring and interconnection technology of next generation flexible electronic devices.
Keywords
Metal line pattern; Nano-transfer printing; Bending test; Durability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. G. Seol, D. J. Lee, T. W. Kim, and B. J. Kim, "Reliability study on rolling deformation of ITO thin film on flexible substrate", J. Microelectron. Packag. Soc., 25(1), 29 (2018).   DOI
2 J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions", Nat. nanotechnol., 5, 225 (2010).   DOI
3 W. I. Park, J. M. Yoon, M. Park, J. Lee, S. K. Kim, J. W. Jeong, K. Kim, H. Y. Jeong, S. Jeon, K. S. No, J. Y. Lee, and Y. S. Jung, "Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes", Nano Lett., 12, 1235 (2012).   DOI
4 Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, "Replacing a battery by a nanogenerator with 20 V output", Adv. Mater., 24, 110 (2012).
5 X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, "High-performance thin-film transistors using semiconductor nanowires and nanoribbons", Nature, 425, 274 (2003).   DOI
6 S. Harrell, T. Seidel, and B. Fay, "The National Technology Roadmap for Semiconductors and SEMATECH future directions", Microelectron Eng., 30, 11 (1996).
7 W. Li, and M. C. Marconi, "Extreme ultraviolet Talbot interference lithography", Opt Express, 23, 25532 (2015).
8 S. K. Kim, "Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography", J. Nanosci. Nanotechnol., 16, 5415 (2016).
9 W. I. Park, K. Kim, H. I. Jang, J. W. Jeong, J. M. Kim, J. Choi, J. H. Park, and Y. S. Jung, "Directed self-assembly with sub-100 degrees Celsius processing temperature, sub-10 nanometer resolution, and sub-1 minute assembly time", Small, 8, 3762 (2012).
10 S. J. Jeong, J. Y. Kim, B. H. Kim, H. S. Moon, and S. O. Kim, "Directed self-assembly of block copolymers for next generation nanolithography", Mater. Today, 16, 468 (2013).
11 J. M. Kim, Y. J. Kim, W. I. Park, Y. H. Hur, J. W. Jeong, D. M. Sim, K. M. Baek, J. H. Lee, M. J. Kim, and Y. S. Jung, "Eliminating the Trade-Off between the Throughput and Pattern Quality of Sub-15 nm Directed Self-Assembly via Warm Solvent Annealing", Adv. Funct. Mater., 25, 306 (2015).
12 Q. Xia, J. J. Yang, W. Wu, X. Li, and R. S. Williams, "Selfaligned memristor cross-point arrays fabricated with one nanoimprint lithography step", Nano Lett., 10, 2909 (2010).
13 X. Liang, T. Chen, Y. S. Jung, Y. Miyamoto, G. Han, S. Cabrini, B. Ma, and D. L. Olynick, "Nanoimprint-induced molecular stacking and pattern stabilization in a solution-processed subphthalocyanine film", ACS Nano, 4, 2627 (2010).
14 M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors", Nat. Mater., 6, 379 (2007).
15 X. Yang, S. Xiao, W. Hu, J. Hwu, R. van de Veerdonk, K. Wago, K. Lee, and D. Kuo, "Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media", Nanotechnol., 25, 395301 (2014).   DOI
16 J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H. I. Jang, J. H. Park, S. Y. Lee, C. O. Park, and Y. S. Jung, "High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching", Nat. comm., 5, 5387 (2014).
17 J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. Chae, and Y. S. Jung, "Nanotransfer printing with sub-10 nm resolution realized using directed self-assembly", Adv. Mater., 24, 3526 (2012).
18 J. H. Ahn, H. Lee, and S. H. Choa, "Technology of flexible semiconductor/memory device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).   DOI