Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.3.019

Stretchable Deformation-Resistance Characteristics of Metal Thin Films for Stretchable Interconnect Applications II. Characteristics Comparison for Au, Pt, and Cu Thin Films  

Park, Donghyun (Department of Materials Science and Engineering, Hongik University)
Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.3, 2017 , pp. 19-26 More about this Journal
Abstract
Stretchable deformation-resistance characteristics of Au, Pt, and Cu films were measured for the stretchable packaging structure where a parylene F was used as an intermediate layer between a PDMS substrate and a metal thin film. The 150 nm-thick Au and Pt films, sputtered on the parylene F-coated PDMS substrate, exhibited the initial resistances of $1.56{\Omega}$ and $5.53{\Omega}$, respectively. The resistance increase ratios at 30% tensile strain were measured as 7 and 18 for Au film and Pt film, respectively. The 150 nm-thick Cu film, sputtered on the parylene F-coated PDMS substrate, exhibited a very poor stretchability compared to Au and Pt films. Its resistance was initially $18.71{\Omega}$, rapidly increased with applying tensile deformation, and finally became open at 5% tensile strain.
Keywords
stretchable packaging; stretchable interconnect; metal thin film; PDMS; parylene;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Y. Choi and T.S. Oh, "Contact Resistance of Flip-Chip Joints in Wearable Electronic Textiles", J. Electron. Mater., 43, 4464 (2014).   DOI
2 D. Park and T. S. Oh, "Comparison of Flip-chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017).   DOI
3 D. Park, K. S. Han and T. S. Oh, "Comparison of Flip-chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-chip Bonding on Compliant Substrates", Mater. Trans., 58(8), 1217 (2017).   DOI
4 J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
5 S. Wagner, S. P. Lacour, J. Jones, I. H. Pai-hui, J. C. Sturm, T. Li and Z. Suo, "Electronic Skin: Architecture and Components", Physica E: Low-dimensional Systems and Nanostructures, 25(2), 326 (2004).   DOI
6 D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008).   DOI
7 S. Yao and Y. Zhu, "Nanomaterial-enabled Stretchable Conductors: Strategies, Materials and Devices", Adv. Mater., 27, 1480 (2015).   DOI
8 Y. Wang, Z. Li and J. Xiao, "Stretchable Thin Film Materials: Fabrication, Application, and Mechanics", J. Electron. Packag., 138, 020801 (2016).   DOI
9 J. Y. Choi and T. S. Oh, "Contact Resistance Comparison of Flip-Chip Joints Produced with Anisotropic Conductive Adhesive and Nonconductive Adhesive for Smart Textile Applications", Mater. Trans., 56, 1711 (2015).   DOI
10 E. O. Thorp, "The Invention of the First Wearable Computer", Digest of Papers, Second International Symposium on Wearable Computers, IEEE, 4 (1998).
11 D. Park, S. J. Shin and T. S. Oh, "Stretchable Characteristics of Thin Au Films on Polydimethylsiloxane Substrates with the Parylene Intermediate Layer for Stretchable Electronic Packaging", J. Electron. Mater., 1 (2017)
12 Y. Y. Hsu, C. Papakyrikos, D. Liu, X. Wang, M. Raj, B. Zhang and R. Ghaffari, "Design for Reliability of Multi-layer Stretchable Interconnects", J. Micromech. Microeng., 24(9), 095014 (2014).   DOI
13 Y. Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren and I.D. Wolf, "Polyimide-enhanced Stretchable Interconnects: Design, Fabrication, and Characterization", Thin Solid Films, 519, 2225 (2011).   DOI
14 A. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand and S. Yunus, "Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer", Langmuir, 26, 3372 (2010).   DOI
15 J. Y. Choi, D. W. Park and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014).   DOI
16 H. A. Oh, D. Park, K. S. Han and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 91 (2015).   DOI
17 H. A. Oh, D. Park, S. J. Shin and T.S. Oh, "Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015).   DOI
18 I. D. Johnston, D. K. McCluskey, C. K. L. Tan and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014).   DOI
19 Y. Qian, X. Zhang, L. Xie, D. Qi, B. K. Chandran, X. Chen and W. Huang, "Stretchable Organic Semiconductor Devices", Adv. Mater., 28, 9243 (2016).   DOI
20 D. H. Kim, J. Xiao, J. Song, Y. Huang and J. A. Rogers, "Stretchable, Curvilinear Electronics Based on Inorganic Materials", Adv. Mater., 22, 2108 (2010).   DOI
21 G. Shin, C. H. Yoon, M. Y. Bae, Y. C. Kim, S. K. Hong, J. A. Rogers and J. S. Ha, "Stretchable Field-effect-transistor Array of Suspended $SnO_2$ Nanowires", Small, 7(9), 1181 (2011).   DOI
22 S. P. Lacour, J. Jones, S. Wagner, T. Li and Z. Suo "Stretchable Interconnects for Elastic Electronic Surfaces", Proc. IEEE 93(8), 1459 (2005).   DOI
23 J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y. Y. Hsu, T. Vervust, I. D. Wolf and M. Jablonski, "Printed Circuit Board Technology Inspired Stretchable Circuits", MRS Bull., 37(03), 254 (2012).   DOI
24 Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Huppert, B. Morey and R. Ghaffari, "Archipelago Platform for Skin-mounted Wearable and Stretchable Electronics", Proc. 64th Electron. Comp. Technol. Conf., (Institute of Electrical and Electronics Engineers), 145 (2014).
25 A. P. Robinson, I. Minev, I. M. Graz and S. P. Lacour, "Microstructured Silicone Substrate for Printable and Stretchable Metallic Films", Langmuir, 27, 4279 (2011).   DOI
26 O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope and W.O. Soboyejo, "Large Strain Deformation and Cracking of Nano-scale Gold Films on PDMS Substrate", Mater. Sci. Eng. B., 170, 32 (2010).   DOI
27 I. M. Graz, D. P. J. Cotton and S. P. Lacour, "Extended Cyclic Uniaxial Loading of Stretchable Gold Thin-films on Elastomeric Substrates", Appl. Phys. Lett., 94, 071902 (2009).   DOI
28 F. Xu and Y. Zhu, "Highly Conductive and Stretchable Silver Nanowire Conductors", Adv. Mater., 24, 5117 (2012).   DOI
29 T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix using Elastic Conductors", Science, 321, 1468 (2008).   DOI
30 K. Y. Chun, Y. Oh, J. Rho, J. H. Ahn, Y. J. Kim, H. R. Choi and S. Baik, "Highly Conductive, Printable and Stretchable Composite Films of Carbon Nanotubes and Silver", Nature Nanotechnol, 5, 853 (2010).   DOI
31 J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska and V. Svorcik, "Properties of Gold Nanostructures Sputtered on Glass", Nanoscale Res. Lett., 6, 96 (2011).   DOI
32 "Gold - Properties and Applications of Gold", https://www.azom.com/properties.aspx?ArticleID=598
33 "Gold", https://en.wikipedia.org/wiki/Gold
34 "Properties: Platinum - Applications - AZoM", https://www.azom.com/properties.aspx?ArticleID=1344
35 "Properties: Copper - AZoM", https://www.azom.com/properties.aspx?ArticleID=597
36 "Copper", https://en.wikipedia.org/wiki/Copper
37 C. Markert, D. Lutzenkirchen-Hecht and R. Frahm, "Structural and Electrical Properties of Thin D. C. Magnetron-sputtered Gold Films Deposited on Float Glass", Surf. Interface Anal., 38, 715 (2006).   DOI
38 K. Mech, R. Kowalik and P. Zabinski, "Cu Thin Films Deposited by DC Magnetron Sputtering for Contact Surfaces on Electronic Components", Arch. Metall. Mater., 56, 903 (2011).
39 M. T. Le, Y. U. Sohn, J. W. Lim and G. S. Choi, "Effect of Sputtering Power on the Nucleation and Growth of Cu Films Deposited by Magnetron Sputtering", Mater. Trans., 51(1), 116 (2010).   DOI
40 N. Chou, J. Jeong and S. Kim, "Crack-free and Reliable Lithographical Patterning Methods on PDMS Substrate", J. Micromech. Microeng., 23, 125035 (2013).   DOI
41 N. Chou, S. Yoo and S. Kim, "A Largely Deformable Surface Type Neural Electrode Array Based on PDMS", IEEE Trans. Neural Syst. Rehabil. Eng., 21, 544 (2013).   DOI
42 "Platinum", https://en.wikipedia.org/wiki/Platinum