Browse > Article
http://dx.doi.org/10.5657/KFAS.2021.0954

Toxic Effects of Waterborne Copper Exposure on the Hematological Parameters and Plasma Components of Mirror Carp Cyprinus carpio nudus  

Jo, A-Hyun (Sun Moon University, Department of Aquatic Life and Medical Science)
Hong, Su-Min (Sun Moon University, Department of Aquatic Life and Medical Science)
Jeong, Ji-ho (Sun Moon University, Department of Aquatic Life and Medical Science)
Eun, Ji-Su (Sun Moon University, Department of Aquatic Life and Medical Science)
Joo, Chang-Hoon (Sun Moon University, Department of Aquatic Life and Medical Science)
Kim, Jun-Hwan (Sun Moon University, Department of Aquatic Life and Medical Science)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.54, no.6, 2021 , pp. 954-964 More about this Journal
Abstract
Mirror carp Cyprinus carpio nudus (weight 42.0±3.8 g, length 14.3±0.4 cm) were exposed to different concentrations of waterborne copper (0, 100, 200, 400, 800, and 1,600 ㎍ Cu2+·L-1) at 20.3℃ for 96 h. The lethal concentration 50 of waterborne copper was 1,176.45 ㎍ Cu2+·L-1. Among hematological parameters, red blood cell count was significantly decreased, whereas there were no significant changes in the hemoglobin concentration and hematocrit value. Among the inorganic plasma components, calcium was significantly decreased following copper exposure. Conversely, organic plasma components such as glucose and total protein were significantly increased. Similarly, enzymatic components, such as aspartate transaminase, alanine transaminase, and alkaline phosphatase, were also significantly increased. These findings suggest that the copper exposure is detrimental to the survival rates and physiology of C. carpio nudus.
Keywords
Copper exposure; LC50; Hematological parameters; Plasma components; Mirror carp;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Du X, Chang P, Tian J, Kong B, Sun F and Xia X. 2020. Effect of ice structuring protein on the quality, thermal stability and oxidation of mirror carp (Cyprinus carpio L.) induced by freeze-thaw cycles. LWT-Food Sci Technol 124, 109140. https://doi.org/10.1016/j.lwt.2020.109140.   DOI
2 Eyckmans M, Celis N, Horemans N, Blust R and Boeck De G. 2011. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103, 112-120. https://doi.org/10.1016/j.aquatox.2011.02.010.   DOI
3 Boeck De G, Meeus W, Coen De W and Blust R. 2004. Tissue-specific Cu bioaccumulation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: rainbow trout Oncorhynchus mykiss, common carp Cyprinus carpio, and gibel carp Carassius auratus gibelio. Aquat Toxicol 70, 179-188. https://doi.org/10.1016/j.aquatox.2004.07.001.   DOI
4 Hoseini SM, Hedayati A and Ghelichpour M. 2014. Plasma metabolites, ions and thyroid hormones levels, and hepatic enzymes activity in Caspian roach Rutilus rutilus caspicus exposed to waterborne manganese. Ecotoxicol Environ Saf 107, 84-89. https://doi.org/10.1016/j.ecoenv.2014.05.002.   DOI
5 Hoseini SM, Hoseinifar SH and Doan HV. 2018. Effect of dietary eucalyptol on stress markers, enzyme activities and immune indicators in serum and haematological characteristics of common carp Cyprinus carpio exposed to toxic concentration of ambient copper. Aquac Res 49, 3045-3054. https://doi.org/10.1111/are.13765.   DOI
6 Kim JH, Choi H, Sung G, Seo SA, Kim KI, Kang YJ and Kang JC. 2019. Toxic effects on hematological parameters and oxidative stress in juvenile olive flounder Paralichthys olivaceus exposed to waterborne zinc. Aquac Rep 15, 100225. https://doi.org/10.1016/j.aqrep.2019.100225.   DOI
7 Cremazy A, Wood CM, Smith DS, Ferreira MS, Johannsson OE, Giacomin M and Val AL. 2016. Investigating copper toxicity in the tropical fish cardinal tetra Paracheirodon axelrodi in natural Amazonian waters: Measurements, modeling, and reality. Aquat Toxicol 180, 353-363.   DOI
8 Blanchard J and Grosell M. 2006. Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities?. Aquat Toxicol 80, 131-139. https://doi.org/10.1016/j.aquatox.2006.08.001.   DOI
9 Kim SG and Kang JC. 2004. Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Mar Environ Res 58, 65-82. https://doi.org/10.1016/j.marenvres.2003.12.004.   DOI
10 Kim JH, Cho JH, Kim SR and Hur YB. 2020. Toxic effects of waterborne ammonia exposure on hematological parameters, oxidative stress and stress indicators of juvenile hybrid grouper Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀. Environ Toxicol Pharmacol 80, 103453. https://doi.org/10.1016/j.etap.2020.103453.   DOI
11 Li F, Wang B, Kong B, Shi S and Xia X. 2019. Decreased gelling properties of protein in mirror carp Cyprinus carpio are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles. Food Hydrocoll 97, 105223. https://doi.org/10.1016/j.foodhyd.2019.105223.   DOI
12 Kim JH, Kim SR, Kim SK and Kang HW. 2021a. Effects of pH changes on blood physiology, antioxidant responses and Ig M of juvenile olive flounder Paralichthys olivaceus. Aquac Rep 21, 100790. https://doi.org/10.1016/j.aqrep.2021.100790.   DOI
13 Kim JH, Yu YB and Choi JH. 2021b. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. J Hazard Mater 413, 125423. https://doi.org/10.1016/j.jhazmat.2021.125423.   DOI
14 Kousar S and Javed M. 2015. Studies on induction of nuclear abnormalities in peripheral blood erythrocytes of fish exposed to copper. Turk J Fish Aquat Sci 15, 879-886. https://doi.org/10.4194/1303-2712-v15_4_11.   DOI
15 Abdel-Tawwab M, Mousa MA and Abbass FE. 2007. Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquaculture 272, 335-345. https://doi.org/10.1016/j.aquaculture.2007.09.004.   DOI
16 Linbo TL, Baldwin DH, McIntyre JK and Scholz NL. 2009. Effects of water hardness, alkalinity, and dissolved organic carbon on the toxicity of copper to the lateral line of developing fish. Environ Toxicol Chem 28, 1455-1461. https://doi.org/10.1897/08-283.1.   DOI
17 Liu XJ, Luo Z, Xiong BX, Liu X, Zhao YH, Hu GF and Lv GJ. 2010. Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicol Environ Saf 73, 1286-1291. https://doi.org/10.1016/j.ecoenv.2010.06.019.   DOI
18 Azevedo ACB, Bozza DA, Doria HB, Osorio FHT, Corcini CD, Pereira FA and Ribeiro CO. 2021. Low levels of inorganic copper impair reproduction parameters in Oreochromis niloticus after chronic exposure. Aquaculture 545, 737186. https://doi.org/10.1016/j.aquaculture.2021.737186.   DOI
19 Baeck S, Min E and Kang JC. 2014. Combined effects of copper and temperature on hematological constituents in the rock fish, Sebastes schlegeli. J Fish Pathol 27, 57-65. https://doi.org/10.7847/jfp.2014.27.1.057.   DOI
20 Sampaio FG, de Lima Boijink C, Oba ET, dos Santos LRB, Kalinin AL and Rantin FT. 2008. Antioxidant defenses and biochemical changes in pacu Piaractus mesopotamicus in response to single and combined copper and hypoxia exposure. Comp Biochem Physiol C Toxicol Pharmacol 147, 43-51. https://doi.org/10.1016/j.cbpc.2007.07.009.   DOI
21 Akbary P, Yarahmadi SS and Jahanbakhshi A. 2018. Hematological, hepatic enzymes' activity and oxidative stress responses of gray mullet Mugil cephalus after sub-acute exposure to copper oxide. Environ Sci Poll Res 25, 1800-1808. https://doi.org/10.1007/s11356-017-0582-1.   DOI
22 Rajabiesterabadi H, Hoseini SM, Fazelan Z, Hoseinifar SH and Doan HV. 2020. Effects of dietary turmeric administration on stress, immune, antioxidant and inflammatory responses of common carp Cyprinus carpio during copper exposure. Aquac Nutr 26, 1143-1153. https://doi.org/10.1111/anu.13071.   DOI
23 Canli EG and Canli M. 2015. Low water conductivity increases the effects of copper on the serum parameters in fish Oreochromis niloticus. Environ Toxicol Pharmacol 39, 606-613. https://doi.org/10.1016/j.etap.2014.12.019.   DOI
24 Carvalho CS and Fernandes MN. 2006. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251, 109-117. https://doi.org/10.1016/j.aquaculture.2005.05.018.   DOI
25 Firat O and Kargin F. 2010. Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch Environ Contam Toxicol 58, 151-157. https://doi.org/10.1007/s00244-009-9344-5.   DOI
26 Firat O, Cogun HY, Yuzereroglu TA, Gok G, Firat O, Kargin F and Kotemen Y. 2011. A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37, 657-666. https://doi.org/10.1007/s10695-011-9466-3.   DOI
27 Priya KK, Ramesh M, Saravanan M and Ponpandian N. 2015. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na+/K+ ATPase activity. Ecotoxicol Environ Saf 120, 295-302. https://doi.org/10.1016/j.ecoenv.2015.05.032.   DOI
28 Mazon AF, Monteiro EAS, Pinheiro GHD and Fernadez MN. 2002. Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Braz J Biol 62, 621-631. https://doi.org/10.1590/S1519-69842002000400010.   DOI
29 Taylor LN, McGeer JC, Wood CM and McDonald DG. 2000. Physiological effects of chronic copper exposure to rainbow trout Oncorhynchus mykiss in hard and soft water: evaluation of chronic indicators. Environ Toxicol Chem 19, 2298-2308. https://doi.org/10.1002/etc.5620190920.   DOI
30 Vieira LR, Gravato C, Soares AMVM, Morgado F and Guilhermino L. 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere 76, 1416-1427. https://doi.org/10.1016/j.chemosphere.2009.06.005.   DOI
31 Mendelsohn BA, Yin C, Johnson SL, Wilm TP, Solnica-Krezel L and Gitlin JD. 2006. Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metab 4, 155-162. https://doi.org/10.1016/j.cmet.2006.05.001.   DOI
32 Zhou XY, Zhang T, Ren L, Wu JJ, Wang W and Liu JX. 2016. Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis. Aquat Toxicol 175, 1-11. https://doi.org/10.1016/j.aquatox.2016.03.008.   DOI
33 Ullah A, Rehman HU, Awais S, Ahsan M, Sardar AM, Muhammad N and Saeed K. 2016. Investigation of acute toxicity and LC50 value of Cu for a fish Oreochromis niloticus. J Entomol Zool Stud 4, 605-607.
34 Gopi N, Vijayakumar S, Thaya R, Govindarajan M, Alharbi NS, Kadaikunnan S and Vaseeharan B. 2019. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. J Trace Elem Med Biol 55, 170-179. https://doi.org/10.1016/j.jtemb.2019.06.011.   DOI
35 Heydarnejad MS, Khosravian-hemami M, Nematollahi A and Rahnama S. 2013. Effects of copper at sublethal concentrations on growth and biochemical parameters in rainbow trout Oncorhynchus mykiss. Int Rev Hydrobiol 98, 71-79. https://doi.org/10.1002/iroh.201201443.   DOI
36 Wani AA and Sikdar-Bar M. 2013. Efficacy of taurine and garlic extract in modulating the alterations in haematological parameters induced by long-term exposure to copper sulphate in Clarias gariepinus. GERF Bull Biosci 4, 1-10.
37 Yu J, Xiao Y, Wang Y, Xu S, Zhou L, Li J and Li X. 2021. Chronic nitrate exposure cause alteration of blood physiological parameters, redox status and apoptosis of juvenile turbot Scophthalmus maximus. Environ Pollut 283, 117103. https://doi.org/10.1016/j.envpol.2021.117103.   DOI
38 Hoyle I, Shaw BJ and Handy RD. 2007. Dietary copper exposure in the African walking catfish Clarias gariepinus: Transient osmoregulatory disturbances and oxidative stress. Aquat Toxicol 83, 62-72. https://doi.org/10.1016/j.aquatox.2007.03.014.   DOI
39 Kamunde C, Clayton C and Wood CM. 2002. Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. Am J Physiol Regul Integr Comp Physiol 283, R69-R78. https://doi.org/10.1152/ajpregu.00016.2002.   DOI
40 Monteiro SM, Mancera JM, Fontainhas-Fernandes A and Sousa M. 2005. Copper induced alterations of biochemical parameters in the gill and plasma of Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol 141, 375-383. https://doi.org/10.1016/j.cbpc.2005.08.002.   DOI
41 Meng XL, Li S, Qin CB, Zhu ZX, Hu WP, Yang LP and Nie GX. 2018. Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol Environ Saf 160, 257-264. https://doi.org/10.1016/j.ecoenv.2018.05.050.   DOI
42 Oh MH, Kim JY, Kim SR, Kim SK and Kim JH. 2020. Hematological parameters and stress responses of olive flounder Paralichthys olivaceus by acute pH change. Korean J Fish Aquatic Sci 53, 733-739. https://doi.org/10.5657/KFAS.2020.0733.   DOI
43 Pilehvar A, Town RM and Blust R. 2020. The effect of copper on behaviour, memory, and associative learning ability of zebrafish Danio rerio. Ecotoxicol Environ Saf 188, 109900. https://doi.org/10.1016/j.ecoenv.2019.109900.   DOI
44 Real M, Munoz I, Guasch H, Navarro E and Sabater S. 2003. The effect of copper exposure on a simple aquatic food chain. Aquat Toxicol 63, 283-291. https://doi.org/10.1016/S0166-445X(02)00187-X.   DOI
45 Tokur B, Ozkutuk S, Atici E, Ozyurt G and Ozyurt CE. 2006. Chemical and sensory quality changes of fish fingers, made from mirror carp (Cyprinus carpio L., 1758), during frozen storage (-18°C). Food Chem 99, 335-341. https://doi.org/10.1016/j.foodchem.2005.07.044.   DOI
46 Karan V, Vitorovic S, Tutundzic V and Poleksic V. 1998. Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicol Environ Saf 40, 49-55. https://doi.org/10.1006/eesa.1998.1641.   DOI
47 Santore RC, Di Toro DM, Paquin PR, Allen HE and Meyer JS. 2001. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20, 2397-2402. https://doi.org/10.1002/etc.5620201035.   DOI
48 Simonato JD, Mela M, Doria HB, Guiloski IC, Randi MA, Carvalho PS and Martinez CB. 2016. Biomarkers of waterborne copper exposure in the Neotropical fish Prochilodus lineatus. Aquat Toxicol 170, 31-41. https://doi.org/10.1016/j.aquatox.2015.11.012.   DOI