Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.2.100

Sheet Resistance of Ion Implanted Si(100) at Various Doses, Energies and Beam Currents  

Kim, Hyung-In (Department of Physics, Yonsei University)
Jeong, Young-Wan (Department of Physics, Yonsei University)
Lee, Myeung-Hee (Department of Physics, Yonsei University)
Kang, Suk-Tai (Department of Physics, Yonsei University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.2, 2011 , pp. 100-105 More about this Journal
Abstract
Simulations were performed using Crystal TRIM software under the same conditions used by previous researchers in order to clarify the mechanism that determines sheet resistance various doses, energies and beam currents. The results showed that the peak of the depth profile (Rp) in the same sample gradually shifts inward and damage increases near the surface as the energy increases for $As^+$ equal dose of $1{\times}10^{15}/cm^2$ implanted into Si(100) energies of 5, 10, and 15 keV. From a theoretical calculation of B+ ion implantation processes at energy of 20 keV using parameters that correspond to 1 mA and 7 mA beam currents with the same dose of $5{\times}10^{15}/cm^2$, it was found that the higher beam currents resulted in more damage near the surface (<100 nm). Likewise, In the simulations employing sets of doses ($1{\times}10^{15}$, $3{\times}10^{15}/cm^2$) and beam currents (0.8 mA, 8 mA), more damage was produced at larger doses and higher current. Thus, sheet resistance at the surface was reduced by the intensified damage from increases in beam energy, dose and beam currents.
Keywords
Si(100); Beam current; Depth profile; Damage profile; Crystal TRIM;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Posselt, J. Teichert, L. Bischoff, and S. Hausmann, Nucl. Instr. and Meth. B 178, 170 (2001).   DOI
2 J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1995), p. 202.
3 M. Nastasi, J. W. Mayer, James, and K. Hirvonen, Ion Solid Interaction : Fundamentals and Applications (Cambridge University Press, Newyork 1996), p. 141.
4 M. Posselt, B. Schmidt, C. S. Murthy, T. Feudel, and K. Suzuki, J. Electrochem. Soc. 144, 4 (1997).
5 D. Girginoudi, N. Georgoulas, A. Thanailakis, and E. K. Ploychroniadis, Materials Science and Engineering. B 114-115, 381-385 (2004).   DOI
6 R. Simonton, J. Shi, T. Boden, P. Maillot, and L. Larson, Mat. Res. Soc. Symp. Proc. 316, 153-158 (1994).
7 I. B. Sung, J. K. Kim, Y. S. Yoo, B. Y. Jeong, and S. T. Kang, J. Kor. Phys, Soc. 46, 478 (2005).   과학기술학회마을
8 B. Y. Jeong, Y. S. Yoo, H. C. Lee, M. C. Park, and S. T. Kang, SAEMULLI (New Phys.) 53, 221 (2006).
9 M. C. Park, H. C. Lee, Y. K. Park, K. N. Lee, and S. T. Kang, SAEMULLI (New Phys.) 56, 523 (2008).
10 M. I. Current, N. Ohno, and T. Hara, Nucl. Instr. and Meth. B 121, 262 (1997).   DOI
11 T. L. Alford, D. C. Thompson, J. W. Mayer, and N. david Theodore, J. Appl. Phys. 106, 114902 (2009).   DOI
12 I. Mizushima, A. Murakoshi, K. Suguro, N. Aoki, and J. Yamauchi, Materials Chemistry and Physics 54, pp.54-59 (1998).   DOI
13 G. Fuse, M. Sano, H. Murooka, T. Yagita, M. Kabasawa, T. Siraishi, Y. Fujimoto, N. Suetsugu, H. Kariya, H. Izutani, and M. Sugitani, Nucl. Instr. and Meth. B 237, 77 (2005).   DOI
14 M. Koh, K. Egusa, H. Furumoto, T. Shirakata, E. Seo, K. Shibahara, S. Yokoyama, and M. Hirose, Japan. J. Appl. Phys. 38, 2324 (1994).
15 M. Posselt, Radiat. Eff. Defects Solids 130, 87 (1994).   DOI
16 M. Posselt, M. Maxder, R. Grotzschel, and M. Behar, Appl. Phys. Lett. 83, 545 (2003).   DOI