Browse > Article
http://dx.doi.org/10.7841/ksbbj.2016.31.2.91

Formation Mechanism of Aroma Compound during Tea Manufacturing Process  

Cho, MiJa (Institute of lnternational Tea Culture & lndustry, Mokpo National University)
Cho, Gijeong (Institute of lnternational Tea Culture & lndustry, Mokpo National University)
Choi, HyunSook (Department of Food Nutrition and Food Service, Chungcheong University)
Choi, Dubok (Biotechnology Lab., R&D Center, BK Company Ltd.)
Cho, KiAn (Department of Medical Management, Chodang University)
Cho, Hoon (Department of Biochemical Polymer Science & Engineering, Chosun University)
Publication Information
KSBB Journal / v.31, no.2, 2016 , pp. 91-99 More about this Journal
Abstract
Tea is an aqueous infusion of dried leaves of the plant Camellia sinensis L. and is the second most widely consumed beverage around the world after water. Aroma compounds of tea differ largely depending on the manufacturing process, even from the same categories of different origins. The flavor of tea can be divided into two categories: taste (non-volatile compounds) and aroma (volatile compounds). In the present study, we review the formation mechanism of main aromas generated from carotenoids, lipids, glycosides as precursors, and Maillard reaction during the tea manufacturing process, with biological and chemical mechanisms.
Keywords
Aroma; Carotenoids; Lipids; Glycosides; Maillard reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Graham, P. J (1998) Tea of the Sages: the Art of Sencha, University of Hawaii Press, Honolulu. USA. pp. 33-39.
2 Li, S., C. Y. Lo, M. H. Pan, C. S. Lai, and C. T. Ho (2013) Black tea: chemical analysis and stability. Food Func. 4: 4-10.
3 Pan, M. H., C. S. Lai, H. Wang, C. Y. Lo, C. T. Ho, and S. L. Lai (2013) Black tea in chemoprevention of cancer and other human diseases. Food Sci. 2: 12-31.
4 Constantinides, S. M., R. Hoover, and P. A. Karakoltsidis (1995) Tea. Food. Rev. Int. 11: 371-542.   DOI
5 Robinson, J. M. and P. O. Owuor (1992) Tea, in: K. C. Wilson, M. N. Clifford (Eds.) Tea: Cultivation to Consumption, Chapman & Hall, London, UK. pp. 603-647.
6 Winterhalter, P (2000) Carotenoid-derived aroma compounds. An overview. In: Abstracts of paper of the American Chemical Society, NY, USA. pp. U25-26.
7 Sanderson, G. W. and H. N. Grahamm (1973) Formation of black tea aroma. J. Agric. Food Chem. 21: 576-585.   DOI
8 Roberts, D. D., A. P. Mordehai, and T. E. Acree (1994) Detection and partial characterization of eight beta-damascenone precursors in apples. J. Agric. Food Chem. 42: 345-349.   DOI
9 Huang, F. C., G. Horvath, P. Molnar, E. Turcsi, J. Deli, J. Schrader, G. Sandmann, H. Schmidt, and W. Schwab (2009) Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascene. Phytochemistry 70: 457-464.   DOI
10 Kanasawud, P. and J.C. Crouzet (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. J. Agric. Food Chem. 38: 237-243.
11 Baldermann, S., M. Kato, and M. Kurosawa (2010) Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J. Exp. Bot. 61: 2967- 2977.   DOI
12 Kawakami, M. and A. Kobayashi (2000) Carotenoid-derived aroma compounds in tea. In: Abstracts of paper of the American Chemical Society, NY, USA. pp. U32-33.
13 Coggon, P., L. J. Romanczyk, and G.W. Sanderson (1977) Extraction, purification, and partial characterization of a tea metalloprotein and its role in the formation of black tea aroma constituents. J. Agric. Food Chem. 25: 278-283.   DOI
14 Takeo. T. and T. Tsushida (1980) Changes in lipoxygenase activity in relation lipid degradation in plucked tea shoots. Phytochemistry 19: 2521-2522.   DOI
15 Hatanaka, A., T. Kajiwara, and K. Matsui (1995) The biogeneration of green odor by green leaves and its physiological functions. J. Nature Res. 50: 467-472.
16 Yang, Z., S. Baldermann, and N. Watanabe (2013) Recent studies of the volatile compounds in tea. Food Res. Int. 53: 585-599.   DOI
17 Su, E. Z., T. Xia, L. P. Gao, and Z. Zhang (2010) Immobilization of beta-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod. Process. 88: 83-89.   DOI
18 Cheng, Y., T. Huynh-Ba, I. Blank, and F. Robert (2008) Temporal changes in aroma release of Longjing tea infusion: interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. J. Agric. Food Chem. 56: 2160-2169.   DOI
19 Mosblech, A., I. Feussner, and I. Heilmann (2009) Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47: 511-517.   DOI
20 Cheong, J. J. and Y. D. Choi (2003) Methyl jasmonate as a vital substance in plants. Trends Genet. 19: 409-413.   DOI
21 Takeo. T. (1981) Black tea aroma and its formation. Part 2. Variation in amounts of linalool and geraniol produced in tea shoots by mechanical injury. Phytochemistry 20: 2149-2151.   DOI
22 Gunstone, F. D., J. L. Harwood, and F. B. Padley (1984) The Lipid Handbook, 2nd ed., Chapman and Hall, New York, USA. pp. 54-65.
23 Moon, J. H., N. Watanabe, and K. Sakata (1994) Studies on the aroma formation mechanism of Oolong tea. Biosci. Biotechnol. Biochem. 58: 1742-1744.   DOI
24 Wang, D., T. Yoshimura, and K. Kubota (1999) Analysis of glycosidically bound aroma precursors in tea leaves. Biosci. Biotechnol. Biochem. 63: 1631-1633.   DOI
25 Kinugasa, H. and T. Takeo (1990) Deterioration mechanism for tea infusion aroma by retort pasteurization. Agr. Biol. Chem. 54: 2537- 2542.
26 Kinoshita, T., S. Hirata, Z. Yang, S. Baldermann, E. Kitayama, S. Matsumoto, M. Suzuki, P. Fleischmann, P. Winterhalter, and N. Watanabe (2010) Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 123: 601-606.   DOI
27 Roscher, R., G. Bringmann, P. Schreier, and W. Schwab (1998) Radiotracer studies on the formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone in detached ripening strawberry fruits. J. Agric. Food Chem. 46: 1488-1493.   DOI
28 Zhou, Y., F. Dong, A. Kunimasa, Y. Zhang, S. Cheng, J. Lu, L. Zhang, A. Murata, F. Mayer, P. Fleischmann, N. Watanabe, and Z. Yang (2014) Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase primeverosidase in tea (Camellia sinensis) flowers. J. Agric. Food Chem. 62: 8042-8050.   DOI
29 Yang, Z., T. Kinoshita, A. Tanida, H. Sayama, A. Morita, and N. Watanabe (2009) Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceousodour. Food Chem. 114: 289-294.   DOI
30 Tsuge, S., H. Ohtani, and C. Watanabe (2011) Pyrolysis-GC/MS data book of syn-thetic polymers: pyrograms, thermograms and MS of pyrolyzates, 1st ed., Elsevier, Amsterdam, Netherlands, pp. 112-132.
31 Vanderhaegen, B., H. Neven, H. Verachtert, and G. Derdelinckx (2006) The chemistry of beer aging. Food Chem. 95: 357-381.   DOI
32 Yaylayan, V.A. (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement. Food Sci.Tech. Res. 1: 1-6.
33 Zhen, Y. S., Z. Chen, and S. J. Cheng (2002) Tea: Bioactivity and the rapeutic Potential, Taylor & Francis, New York, USA. pp. 22-29.
34 Adams, A. and N. de Kimpe (2006) Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: extraordinary Maillard flavor compounds. Chem. Rev. 106: 2299-2319.   DOI
35 Tu, Y., X. Yang, S. Zhang, and Y. Zhu (2012) Determination of theanine and gamma-aminobutyric acid in tea by high performanceliquid chromatography with precolumn derivatization. Chinese J. Chromatogr. 30: 184-189.
36 Gijs, L., P. Perpete, A. Timmermans, and S. Collin (2000) 3-Methylthiopropionaldehydeas precursor of dimethyl trisulfide in aged beers. J. Agric. Food Chem. 48: 6196-6199.   DOI
37 Hofmann, T. and P. Schieberle (1998) 2-Oxopropanal, hydroxy-2-propanone, and 1-pyrroline Important intermediates in the generation of the roast-smelling food flavor compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine. J. Agric. Food Chem. 46: 2270-2277.   DOI
38 Yvon, M. and L. Rijnen (2001) Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11: 185-201.   DOI
39 Song, D. U., Y. D. Jung, K. O. Chay, M. A. Chung, K. H. Lee, S. Y. Yang, B. A. Shin, and B. W. Ahn (2002) Effect of drinking green tea onage-associated accumulation of Maillard-type fluorescence and carbonyl groups in rat aortic and skin collagen. Arch. Biochem. Biophys. 397: 424-429.   DOI