Browse > Article
http://dx.doi.org/10.4490/algae.2018.33.11.13

Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions  

Wu, Hailong (Department of Marine Science, College of Natural Sciences, Incheon National University)
Shin, Sook Kyung (Department of Marine Science, College of Natural Sciences, Incheon National University)
Jang, Sojin (Department of Marine Science, College of Natural Sciences, Incheon National University)
Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut)
Kim, JangKyun (Department of Marine Science, College of Natural Sciences, Incheon National University)
Publication Information
ALGAE / v.33, no.4, 2018 , pp. 329-340 More about this Journal
Abstract
The present study was to determine the effects of salinity on the growth and nutrient bioextraction abilities of Gracilaria and Ulva species, and to determine if these seaweeds can be used for nutrient bioextraction under hypo- and / or hyperosmotic conditions. Two Gracilaria species, G. chorda and G. vermiculophylla, and two Ulva species, U. prolifera and U. compressa, were cultured at various salinity conditions (5, 10, 15, 20, 30, 40, and 50 psu) for 3 weeks. Results showed that the growth rates, nutrient uptake, tissue nutrient contents and nutrient removal were significantly affected by salinity and species. All four species were euryhaline with the highest growth rates at 20 psu. Among the four species, U. prolifera, U. compressa, and G. vermiculophylla showed potential to be used for nutrient bioextraction in estuaries and / or land-based fish farms due to their rapid growth, high nutrient uptake, high tissue carbon and nitrogen accumulation and removal capacities.
Keywords
Gracilaria; growth; nutrient bioextraction; salinity; seaweed aquaculture; Ulva;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45.   DOI
2 Corey, P., Kim, J. K., Duston, J., Garbary, D. J. & Prithiviraj, B. 2013. Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal. J. Appl. Phycol. 25:1349-1358.   DOI
3 Dawes, C. J., Orduna-Rojas, J. & Robledo, D. 1999. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl. Phycol. 10:419-425.
4 El-Mezayen, M. M., Rueda-Roa, D. T., Essa, M. A., Muller-Karger, F. E. & Elghobashy, A. E. 2018. Water quality observations in the marine aquaculture complex of the Deeba Triangle, Lake Manzala, Egyptian Mediterranean coast. Environ. Monit. Assess. 190:436.   DOI
5 Ferrol-Schulte, D., Gorris, P., Baitoningsih, W., Adhuri, D. S. & Ferse, S. C. A. 2015. Coastal livelihood vulnerability to marine resource degradation: a review of the Indonesian national coastal and marine policy framework. Mar. Policy 52:163-171.   DOI
6 Food and Agriculture Organization of the United Nations. 2018. The state of world fisheries and aquaculture. Available from: http://www.fao.org/fishery/en. Accessed Jul 14, 2018.
7 Gorman, L., Kraemer, G. P., Yarish, C., Boo, S. M. & Kim, J. K. 2017. The effects of temperature on the growth and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA. Algae 32:57-66.   DOI
8 Angell, A. R., Mata, L., de Nys, R. & Paul, N. A. 2015. Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). J. Phycol. 51:536-545.   DOI
9 Biebl, R. 1962. Seaweeds. In Lewin, R. A. (Ed.) Physiology and Biochemistry of the Algae. Academic Press, New York, pp. 799-815.
10 Bird, C. J. & McLachlan, J. 1986. The effect of salinity on distribution of species Gracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. Bot. Mar. 29: 231-238.
11 Bird, N. L., Chen, L. C. M. & McLachlan, J. 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot. Mar. 22:521-527.
12 Boeuf, G. & Payan, P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 130:411-423.   DOI
13 Buschmann, A. H., Varela, D. A., Hernandez-Gonzalez, M. C. & Huovinen, P. 2008. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. J. Appl. Phycol. 20:571-577.   DOI
14 Neori, A., Msuya, F. E., Shauli, L., Schuenhoff, A., Kopel, F. & Shpigel, M. 2003. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J. Appl. Phycol. 15:543-553.   DOI
15 Ott, F. D. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellate. Va. J. Sci. 16:205-218.
16 Rueness, J. 2005. Life history and molecular sequences of Gracilaria vermiculophylla (Gracilariales, Rhodophyta), a new introduction to European waters. Phycologia 44:120-128.   DOI
17 Qu, L., Xu, J., Sun, J., Li, X. & Gao, K. 2017. Diurnal pH fluctuations of seawater influence the responses of an economic red macroalga Gracilaria lemaneiformis to future $CO_2$-induced seawater acidification. Aquaculture 473:383-388.   DOI
18 Rose, J. M., Bricker, S. B., Deonarine, S., Ferreira, J. G., Getchis, T., Grant, J., Kim, J. K., Krumholz, J. S., Kraemer, G. P., Stephenson, K., Wikfors, G. H. & Yarish, C. 2015. Nutrient bioextraction. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer Press, New York, pp. 1-33.
19 Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J. & Boyd, C. E. 2010. Shrimp culture in inland low salinity waters. Rev. Aquac. 2:191-208.   DOI
20 Russell, G. 1987. Salinity and seaweed vegetation. In Crawford, R. M. M. (Ed.) Plant Life in Aquatic and Amphibious Habitats. Blackwell Scientific, Oxford, pp. 35-52.
21 Satoh, K., Smith, C. M. & Fork, D. C. 1983. Effects of salinity on primary processes of photosynthesis in the red Porphyra perforata. Plant Physiol. 73:643-647.   DOI
22 Wu, H., Kim, J. K., Huo, Y., Zhang, J. & He, P. 2017. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China's radial sandbanks. Aquat. Bot. 137:72-79.   DOI
23 Trimmer, M., Nedwell, D. B., Sivyer, D. B. & Malcolm, S. J. 2000. Seasonal organic mineralisation and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp. Mar. Ecol. Prog. Ser. 203:67-80.   DOI
24 Weinberger, F., Buchholz, B., Karez, R. & Wahl, M. 2008. The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat. Biol. 3:251-264.   DOI
25 Wu, H., Huo, Y., Han, F., Liu, Y. & He, P. 2015. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in the Xiangshan bay, China. Mar. Pollut. Bull. 91:272-279.   DOI
26 Wu, H., Zhang, J., Yarish, C., Kim, J. K., He, P. & Jim, J. K. 2018. Bioremediation and nutrient migration during blooms of Ulva in the Yellow Sea, China. Phycologia 57:223-231.   DOI
27 Xiao, J., Zhang, X., Gao, C., Jiang, M., Li, R., Wang, Z., Li, Y., Fan, S. & Zhang, X. 2016. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanol. Sin. 35:1141-21.
28 Yang, Y. -F., Fei, X. -G., Song, J. -M., Hu, H. -Y., Wang, G. -C. & Chung, I. K. 2006. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248-255.   DOI
29 Yarish, C., Edwards, P. & Casey, S. 1979b. Acclimation responses to salinity of three estuarine red algae from New Jersey. Mar. Biol. 51:289-294.   DOI
30 Yarish, C., Edwards, P. & Casey, A. S. 1979a. A culture study of salinity responses in ecotypes of two estuarine red algae. J. Phycol. 15:341-346.   DOI
31 Yarish, C., Edwards, P. & Casey, S. 1980. The effects of salinity, calcium and potassium variations on the growth of two estuarine red algae. J. Exp. Mar. Biol. Ecol. 47:235-249.   DOI
32 Yu, Z., Zhu, X., Jiang, Y., Luo, P. & Hu, C. 2014. Bioremediation and fodder potentials of two Sargassum spp. in coastal waters of Shenzhen, South China. Mar. Pollut. Bull. 85:797-802.   DOI
33 Zhang, J., Kim, J. K., Yarish, C. & He, P. 2016. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Pollut. Bull. 104:101-106.   DOI
34 Zheng, X., Duan, Y., Dong, H. & Zhang, J. 2017. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol. 62:195-201.   DOI
35 Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X. & Zhang, F. 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252:264-276.   DOI
36 Kim, J. K., Kottuparambil, S., Moh, S. H., Lee, T. K., Kim, Y. -J., Rhee, J. -S., Choi, E. -M., Yu, Y. J., Yarish, C. & Han, T. 2015a. Potential applications of nuisance microalgal blooms. J. Appl. Phycol. 27:1223-1234.   DOI
37 Huo, Y., Han, H., Hua, L., Wei, Z., Yu, K., Shi, H., Kim, J. K., Yarish, C. & He, P. 2016. Tracing the origin of green macroalgal blooms based on the large scale spatio-temporal distribution of Ulva microscopic propagules and settled mature Ulva vegetative thalli in coastal regions of the Yellow Sea, China. Harmful Algae 59:91-99.   DOI
38 Hurd, C. L., Harrison, P. J., Bischof, K. & Lobban, C. S. 2014. Seaweed ecology and physiology. 2nd ed. Cambridge University Press, Cambridge, 562 pp.
39 Karsten, U. 2012. Seaweed acclimation to salinity and desiccation stress. In Wiencke, C. & Bischof, K. (Eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, Berlin, pp. 87-107.
40 Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440.   DOI
41 Kim, J. K., Kraemer, G. P. & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156.   DOI
42 Kim, J. K., Kraemer, G. P. & Yarish, C. 2015b. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction. Mar. Ecol. Prog. Ser. 531:155-166.   DOI
43 Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13.   DOI
44 Lapointe, B. E., Rice, D. L. & Lawrence, J. M. 1984. Responses of photosynthesis, respiration, growth, and cellular constituents to hypo-osmotic short in the red alga, Gracilaria tikvahiae. Comp. Biochem. Physiol. Part A Physiol. 77:127-132.   DOI
45 Kim, J. K., Yarish, C. & Pereira, R. 2016. Tolerances to hypoosmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta). Phycologia 55:257-264.   DOI
46 Kourafalou, V. H., Lee, T. N., Oey, L. -Y. & Wang, J. D. 1996. The fate of river discharge on the continental shelf: 2. Transport of coastal low-salinity waters under realistic wind and tidal forcing. J. Geophys. Res. 101:3435-3455.   DOI
47 Kraemer, G. P., Carmona, R., Chopin, T., Neefus, C., Tang, X. & Yarish, C. 2004. Evaluation of the bioremediatory potential of several species of the red alga Porphyra using short-term measurements of nitrogen uptake as a rapid bioassay. J. Appl. Phycol. 16:489-497.   DOI
48 Lartigue, J., Neill, A., Hayden, B. L., Pulfer, J. & Cebrian, J. 2003. The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquat. Bot. 75:339-350.   DOI
49 Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C., Stacey, P. E. & Garza, C. 2014. Long Island sound: prospects for the urban sea. Springer, New York, 558 pp.
50 Liu, J. W. & Dong, S. L. 2001. Comparative study on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. liui (Rhodophyta) and Ulva pertusa (Chlorophyta). I. Nitrogen storage under nitrogen enrichment and starvation. J. Environ. Sci. 13:318-322.
51 Macler, B. A. 1988. Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga, Gelidium coulteri. Plant Physiol. 88:690-694.   DOI
52 Martinez-Aragon, J. F., Hernandez, I., Perez-Llorens, J. L., Vazquez, R. & Vergara, J. J. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. Phosphate. J. Appl. Phycol. 14:365-374.   DOI
53 Yarish, C. & Edwards, P. 1982. A field and cultural investigation of the horizontal and seasonal distribution of estuarine red algae of New Jersey. Phycologia 21:112-124.   DOI
54 Choi, H. G., Kim, Y. S., Kim, J. H., Lee, S. J., Park, E. J., Ryu, J. & Nam, K. W. 2006. Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J. Appl. Phycol. 18:269-277.   DOI
55 Choi, T. S., Kang, E. J., Kim, J. -H. & Kim, K. Y. 2010. Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae 25:17-26.   DOI
56 Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H. & Fang, J. 2008. Ecological Engineering: Multi-trophic integration for sustainable marine aquaculture. In Jorgensen, S. E. & Fath, B. D. (Eds.) Encyclopedia of Ecology. Vol. 3. Elsevier, Amsterdam, pp. 2463-2475.
57 Chung, I. K., Kang, Y. H., Yarish, C., Kraemer, G. P. & Lee, J. A. 2002. Application of seaweed cultivation to the bioremediation of nutrient-rich effluent. Algae 17:187-194.   DOI
58 Mariscal-Lagarda, M. M. & Paez-Osuna, F. 2014. Mass balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: a short communication. Aquac. Eng. 58:107-112.   DOI
59 Mariscal-Lagarda, M. M., Paez-Osuna, F., Esquer-Mendez, J. L., Guerrero-Monroy, I., del Vivar, A. R. & Felix-Gastelum, R. 2012. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquaculture 366-367:76-84.   DOI
60 McGlathery, K. J., Pedersen, M. F. & Borum, J. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J. Phycol. 32:393-401.   DOI
61 McLachlan, J. & Bird, C. J. 1984. Geographical and experimental assessment of the distribution of Gracilaria species (Rhodophyta: Gigartinales) in relation to temperature. Helgol. Meeresunters. 38:319-334.   DOI
62 Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I. & Yarish, C. 2011. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199.   DOI
63 Abreu, M. H., Varela, D. A., Henriquez, L., Villarroel, A., Yarish, C., Sousa-Pinto, I. & Buschmann, A. H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture 293:211-220.   DOI
64 Tedesco, M. A., Swanson, R. L., Stacey, P. E., Latimer, J. S., Yarish, C. & Garza, C. 2014. Synthesis for management. In Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C., Stacey, P. E. & Garza, C. (Eds.) Long Island Sound: Prospects for the Urban Sea. Springer, New York, pp. 481-539.