Browse > Article
http://dx.doi.org/10.4490/algae.2018.33.11.9

Envelope development and variation in Trachelomonas hispida (Euglenophyta)  

Poniewozik, Malgorzata (Department of Plant Physiology and Biotechnology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin)
Zieba, Emil (Laboratory of Confocal and Electron Microscopy, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin)
Sajnaga, Ewa (Laboratory of Biocontrol, Production and Application of Entomopathogenic Nematodes, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin)
Publication Information
ALGAE / v.33, no.4, 2018 , pp. 305-318 More about this Journal
Abstract
In Trachelomonas hispida, the adult envelope that surrounds the monad is oval in shape and covered with spines. Development of the lorica is an interesting, but poorly known phenomenon. We observed in detail the formation of spineless envelopes of T. hispida using light microscopy and scanning electron microscopy. The results showed that young cells formed delicate and net-like envelopes. The structure changed with age, and mature specimens had solid, thick loricae with small pores. As the loricae aged, they changed their shape, and rope-like fibres from the external layer started to unwind, progressing from the apical pore, exposing the underlying net-like structure. X-ray spectrometry showed that Fe was the major mineral component in young and mature loricae, whereas old loricae did not contain Fe salts, although they did contain a high number of Mn compounds. We also noticed a different pattern of mineralization process in the envelopes. Apart from the even distribution of mineral deposition over the entire lorica, we observed that it started from the apical pore and ended at the posterior end. There was considerable morphological variation in envelope shape and ornamentation, which had collars and folds around the apical pore and process at the posterior end. This suggested that many varieties of T. hispida should be taxonomically reappraised. We also discuss a hypothetical role for the spines on lorica surfaces in aquatic ecosystems.
Keywords
envelope; euglenoids; Euglenophyceae; lorica formation; Trachelomonas hispida;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Conforti, V. 1999. A taxonomic and ultrastructural study of Trachelomonas Ehr. (Euglenophyta) from subtropical Argentina. Cryptogam. Algol. 20:167-207.   DOI
2 Conforti, V. 2010. Ultrastructure of the lorica of species (Euglenophyta) from New Jersey, USA. Algol. Stud. 135:15-40.   DOI
3 Conforti, V., Walne, P. L. & Dunlap, J. R. 1994. Comparative ultrastructure and elemental composition of envelopes of Trachelomonas and Strombomonas (Euglenophyta). Acta Protozool. 33:71-78.
4 Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModeltest2: more models, new heuristics and parallel computing. Nat. Methods 9:772.
5 Dillard, G. E. 2000. Freshwater algae of the Southeastern United States. Part 7: Pigmented Euglenophyceae. Bibliotheca Phycologica. J. Cramer, Berlin, 135 pp.
6 Donnelly Barnes, L. S., Walne, P. L. & Dunlap, J. R. 1986. Cytological and taxonomic studies of the Euglenales. I. Ultrastructure and envelope elemental composition in Trachelomonas. Br. Phycol. J. 21:387-397.   DOI
7 Duangjan, K. & Wolowski, K. 2013. New taxa of loricate euglenoids Strombomonas and Trachelomonas from Thailand. Pol. Bot. J. 58:337-345.
8 Dunlap, J. R. & Walne, P. L. 1985. Fine structure and biomineralization of the mucilage envelopes of Trachelomas lefevrei (Euglenophyceae). J. Protozool. 32:437-441.   DOI
9 Dunlap, J. R. & Walne, P. L. 1987. Variations in envelope morphology and mineralization in Trachelomonas lefevrei (Euglenophyceae). J. Phycol. 23:556-564.
10 Dunlap, J. R., Walne, P. L. & Bentley, J. 1983. Microarchitecture and elemental spatial segregation of envelopes of Trachelomonas lefevrei (Euglenophyceae). Protoplasma 117:97-106.   DOI
11 Lukomska-Kowalczyk, M., Karnkowska, A., Krupska, M., Milanowski, R. & Zakrys, B. 2016. DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J. Phycol. 52:951-960.   DOI
12 Lurling, M. & Van Donk, E. 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88:111-118.   DOI
13 Milligan, A. J. & Morel, F. M. M. 2002. A proton buffering role for silica in diatoms. Science 297:1848-1850.   DOI
14 Mitchell, J. G., Seuront, L., Doubell, M. J., Losic, D., Voelcker, N. H., Seymour, J. & Lal, R. 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS ONE 8:e59548.   DOI
15 Muller, W. E. G. 2012. Silicon biomineralization: biology-biochemistry-molecular biology-biotechnology. Springer Science & Business Media, Berlin, 340 pp.
16 Padisak, J., Soroczki-Pinter, E. & Rezner, Z. 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: an experimental study. Hydrobiologia 500:243-257.   DOI
17 Pentecost, A. 1991. Calcification processes in algae and cyanobacteria. In Riding, R. (Ed.) Calcareous Algae and Stromatolites. Springer, Berlin, pp. 3-20.
18 Pereira, M. J. & Azeiteiro, U. M. M. 2003. Structure, organization and elemental composition of the envelopes of Trachelomonas (Euglenophyta): a review. Acta Oecol. 24(Suppl. 1):S57-S66.   DOI
19 Solorzano, G. G., Martinez, M. G. O., Vazquez, A. L., Garfias, M. B. M., Zuniga, R. E. Q. & Conforti, V. 2011. Trachelomonas (Euglenophyta) from a eutrophic reservoir in Central Mexico. J. Environ. Biol. 32:463-471.
20 Starmach, K. 1983. Euglenophyta - Eugleniny. Flora Slodkowodna Polski. Part 3. Panstwowe Wydawnictwo Naukowe. Warszawa, Krakow, 563 pp.
21 Sviben, S., Kepcija, R. M., Vidakovic-Cifrek, Z., Peric, M. S., Kruzic, P., Popijac, A. & Primc, B. 2018. Chara spp. exhibit highly heterogeneous light adaptation, calcite encrustation and epiphyton patterns in a marl lake. Aquat. Bot. 147:1-10.   DOI
22 Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI
23 Thompson, A. S., Rhodes, J. C. & Pettman, I. 1988. Natural Environmental Research Council. Culture collection of algae and protozoa: catalogue of strains. Freshwater Biology Association (U.K.), Ambleside, 22 pp.
24 Hall, T. A. 2011. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2:60-61.
25 Pereira, M. J., Azeiteiro, U. M. M., Gonçalves, F. & Soares, A. M. V. M. 2003. Inorganic composition of the envelopes of Trachelomonas Ehr. (Euglenophyta). Acta Oecol. 24(Suppl. 1):S317-S324.   DOI
26 Playfair, G. I. 1915. The genus Trachelomonas. Proc. Linn. Soc. N. S. W. 40:1-41.
27 Dunlap, J. R., Walne, P. L. & Kivic, P. A. 1986. Cytological and taxonomic studies of the Euglenales. II. Comparative microarchitecture and cytochemistry of envelopes of Strombomonas and Trachelomonas. Br. Phycol. J. 21:399-405.   DOI
28 Ellegaard, M., Lenau, T., Lundholm, N., Maibohm, C., Friis, S. M. M., Rottwitt, K. & Su, Y. 2016. The fascinating diatom frustules: can it play a role for attenuation of UV radiation? J. Appl. Phycol. 28:3295-3306.   DOI
29 Francillon-Vieillot, H., De Buffrenil, V., Castanet, J., Geraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L. & De Ricqles, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In Carter, J. G. (Ed.) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Vol. 1. Van Nostrand Reinhold, New York, pp. 471-530.
30 Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. & Smetacek, V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841-843.   DOI
31 Hildebrand, M. & Lerch, S. J. 2015. Diatom silica biomineralization: parallel development of approaches and understanding. Semin. Cell Dev. Biol. 46:27-35.   DOI
32 Kim, J. -T., Shin, W. & Boo, S. -M. 1999. A taxonomic reappraisal of Trachelomonas hispida (Euglenophyceae) from Korean Inland waters. Algae 14:1-7.
33 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.   DOI
34 Leedale, G. F. 1975. Envelope formation and structure in the euglenoid genus Trachelomonas. Br. Phycol. J. 10:17-41.   DOI
35 Preisig, H. R. 1994. Siliceous structures and silicification in flagellated protists. In Wetherbee, R., Pickett-Heaps, J. D. & Andersen, R. A. (Eds.) The Protistan Cell Surface. Springer, Vienna, pp. 29-42.
36 Poniewozik, M. 2016. The euglenoid genus Trachelomonas (Euglenophyta) from eastern Poland: study on morphology and ultrastructure of envelopes with comments on morphologically similar species. Phytotaxa 278:181-211.   DOI
37 Poniewozik, M. 2017. Element composition of Trachelomonas envelopes (Euglenophyta). Pol. Bot. J. 62:77-85.
38 Poniewozik, M., Wolowski, K. & Piątek, J. 2018. Trachelomonas volzii vs T. dubia (Euglenophyceae): one or two separate species? Study on similarities and differences of the species. Phytotaxa 357:1-16.   DOI
39 Pringsheim, E. G. 1953. Observations on some species of Trachelomonas grown in culture. New Phytol. 52:238-266.   DOI
40 Raven, J. A. & Waite, A. M. 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol. 162:45-61.   DOI
41 Reynolds, C. S. 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37-45.   DOI
42 West, L. K., Walne, P. L. & Rosowski, J. R. 1980b. Trachelomonas hispida var. coronata (Euglenophyceae). I. Ultrastructure of cytoskeletal and flagellar systems. J. Phycol. 16:489-497.   DOI
43 Wang, Q. -X., Liu, H. -J., Yu, J., Sun, S. -Q., Zhang, D. -W. & Bao, W. -M. 2003. Comparative studies on the fine structure and elemental composition of envelopes of Trachelomonas and Strombomonas (Euglenophyta). Acta Bot. Sin. 45:601-607.
44 West, L. K. & Walne, P. L. 1980. Trachelomonas hispida var. coronata (Euglenophyceae). II. Envelope substructure. J. Phycol. 16:498-506.   DOI
45 West, L. K., Walne, P. L. & Bentley, J. 1980a. Trachelomonas hispida var. coronata (Euglenophyceae). III. Envelope elemental composition and mineralization. J. Phycol. 16:582-591.   DOI
46 Shubert, E., Wilk-Wozniak, E. & Ligeza, S. 2014. An autecological investigation of Desmodesmus: implications for ecology and taxonomy. Plant Ecol. Evol. 147:202-212.   DOI
47 Bilan, M. I. & Usov, A. I. 2001. Polysaccharides of calcareous algae and their effect on the calcification process. Russ. J. Bioorg. Chem. 27:2-16.   DOI
48 Bozzola, J. J. & Russell, L. D. 1995. Electron microscopy: principles and techniques for biologists. Jones and Bartlett, Boston, MA, 542 pp.
49 Brosnan, S., Brown, P. J. P., Farmer, M. A. & Triemer, R. E. 2005. Morphological separation of the euglenoid genera Trachelomonas and Strombomonas (Euglenophyta) based on lorica development and posterior strip reduction. J. Phycol. 41:590-605.   DOI
50 Sandgren, C. D., Hall, S. A. & Barlow, S. B. 1996. Siliceous scale production in chrysophyte and synurophyte algae. I. Effects of silica-limited growth on cell silica content, scale morphology, and the construction of the scale layer of Synura petersenii. J. Phycol. 32:675-692.   DOI
51 Skvortsov, B. W. 1919. Notes on the agriculture botany and zoology of China. XXXI. On new Flagellate from Manchuria. J. North China Branch R. Asiat. Soc. 50:96-104.
52 Wolowski, K. & Walne, P. L. 2007. Strombomonas and Trachelomonas species (Euglenophyta) from south-eastern USA. Eur. J. Phycol. 42:409-431.   DOI
53 Wolowski, K. 1998. Taxonomic and environmental studies on euglenophytes of the Krakow-Czestochowa Upland (Southern Poland). Fragm. Florist Geobot. Pol. 6:1-192.
54 Wolowski, K. & Hindak, F. 2003. Atlas of Euglenophytes. VEDA, Publishing House of the Slovak Academy of Sciences, Bratislava, 136 pp.
55 Wolowski, K., Poniewozik, M. & Juran, J. 2016. Morphological variability of loricae in Trachelomonas caudata complex (Euglenophyta). Cryptogam. Algol. 37:97-108.   DOI