Browse > Article
http://dx.doi.org/10.20909/kopast.2019.25.2.57

Oyster Shell Disposal: Potential as a Novel Ecofriendly Antimicrobial Agent for Packaging: a Mini Review  

Sadeghi, Kambiz (Department of Packaging, Yonsei University)
Park, Kitae (Department of Packaging, Yonsei University)
Seo, Jongchul (Department of Packaging, Yonsei University)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.25, no.2, 2019 , pp. 57-62 More about this Journal
Abstract
The management of oyster shell disposal is an ongoing challenge in the southern coast of Korea because of continuously dumping the oyster shell in environment. Oyster shell wastes could be a biocidal alternative after calcination using a heat treatment. Calcined oyster shell is normally obtained through thermally conversion of $CaCO_3$ (main component in oyster shell (96%)) into CaO. This study provides a brief overview of oyster shell disposal and its potential as an antimicrobial agent with a focus on calcination process, antimicrobial mechanisms, and packaging applications.
Keywords
Oyster shell disposal; calcination; antimicrobial activity; CaO;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abdel-Shafy, H.I. and Mansour, M.S. 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27(4), 1275-1290.   DOI
2 Thenepalli, T., Ramakrishna, C. and Ahn, J.W. 2017. Environmental Effect of the Coffee Waste and Anti-Microbial Property of Oyster Shell Waste Treatment. 에너지공학, 26(2) 39-49.   DOI
3 FAO, FAO yearbook, Fishery statistics, Vol. 100/2 (2005), Food and Agriculture Organization of the United Nations, Rome. 2007.
4 Silva, T. H., Mesquita-Guimaraes, J., Henriques, B., Silva, F. and Fredel, M. 2019. The potential use of oyster shell waste in new value-added by-product. Resources, 8(1)13.   DOI
5 Ok, Y.S., Oh, S.E., Ahmad, M., Hyun, S., Kim, K.R., Moon, D.H., Lee, S.S., Lim, K.J., Jeon, W.T. and Yang, J.E. 2010. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 61(6) 1301-1308.   DOI
6 Tsou, C.H., Wu, C.S., Hung, W.S., De Guzman, M.R., Gao, C., Wang, R.Y., Chen, J., Wan, N., Peng, Y.J. and Suen, M.C. 2019. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 160, 265-271.   DOI
7 Vongsavat, P. V. and Winotai, S. M. 2006. Phase transitions of natural corals monitored by ESR spectroscopy, Nucl. Instrum. Methods Phys. Res., Sect. B 243, 167-173.   DOI
8 Hou, Y., Shavandi, A., Carne, A., Bekhit, A.A., Ng, T.B., Cheung, R.C.F. and Bekhit, A.E.D.A. 2016. Marine shells: Potential opportunities for extraction of functional and healthpromoting materials. Crit. Rev. Env. Sci. Tec. 46(11-12), 1047-1116.   DOI
9 Bigdeli, M.R., Shushizadeh, M.R. and Mohandespur, B. 2015. The Persian Gulf calcined coral, Acropora species: An efficient catalyst for aldol condensation, Jundishapur J. Nat. Pharm. Prod. 10, e26073.
10 Münchow, E.A., Pankajakshan, D., Albuquerque, M.T.P., Kamocki, K., Piva, E., Gregory, R.L. and M.C. Bottino. 2016. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering. Clin. Oral Investig. 20(8), 1921-1933.   DOI
11 Sadeghi, K., Thanakkasaraneea, S., Lim, I. and Seo, J. 2019. Calcined marine coral powders as a novel ecofriendly antimicrobial agent. Mater. Sci. Eng., C (under review).
12 Ci, Y., Wang, L., Guo, Y., Sun, R., Wang, X. and Li, J. 2015. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate. Int. J. Clin. Exp. Med. 8(8), 12404.
13 Suresh, S., Karthikeyan, S., Saravanan, P., Jayamoorthy, K. and Dhanalekshmi, K. 2016. Comparison of antibacterial and antifungal activity of 5-amino-2-mercapto benzimidazole and functionalized $Ag_3O_4$ nanoparticles. Karbala Int. J. Mod. Sci. 2, 129-137.   DOI
14 Hamester, M.R.R., Balzer, P.S. and Becker, D. 2012. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater. Res., 15(2), 204-208.   DOI
15 Roy, A., Gauri, S.S., Bhattacharya, M. and Bhattacharya, J. 2013. Antimicrobial activity of CaO nanoparticles. J. Biomed. Nanotechnol. 9, 1570-1578.   DOI
16 Sawai, J. Kawada, E. Kanou, F., Igarashi, H. Hashimoto, A., Kokugan, T. and Shimizu. M. 1996. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29, 627-633.   DOI
17 Sawai, J. Himizu, K. and Yamamoto, O. 2005. Kinetics of bacterial death by heated dolomite powder slurry. Soil Biol. Biochem. 37, 1484-1489.   DOI
18 Oikawa, K., Asada, T., Yamamoto, K., Wakabayashi, H., Sasaki, M., Sato, M. and Matsuda, J. 2000. Antibacterial activity of calcined shell calcium prepared from wild surf clam. J. Health Sci. 46(2), 98-103.   DOI
19 Kim, Y.S., Choi, Y.M., Noh, D.O., Cho, S.Y. and Suh, H.J. 2007. The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chemistry, 103(1), 155-160.   DOI
20 Choi, Y.M., Whang, J.H., Kim, J.M. and Suh, H.J. 2006. The effect of oyster shell powder on the extension of the shelflife of Kimchi. Food Control, 17(9), 695-699.   DOI
21 Choi, J.S., Lee, H.J., Jin, S.K., Lee, H.J. and Choi, Y.I. 2014. Effect of oyster shell calcium powder on the quality of restructured pork ham. Korean. J. Food Sci. An. 34(3), 372.   DOI
22 Chen, Y.C., Lin, C.L., Li, C.T. and Hwang, D.F. 2015. Structural transformation of oyster, hard clam, and sea urchin shells after calcination and their antibacterial activity against foodborne microorganisms. Fish. Sci. 81(4), 787-794.   DOI
23 Xing, R., Qin, Y., Guan, X., Liu, S., Yu, H. and Li, P. 2013. Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. Egypt. J. Aquat. Res. 39(2), 83-90.   DOI
24 Jung, B.M., Jung, S.J. and Kim, E.S. 2010. Quality characteristics and storage properties of gat kimchi added with oyster shell powder and Salicornia herbacea powder. Korean J. Food Cook. Sci. 26(2), 188-197.