Browse > Article
http://dx.doi.org/10.9799/ksfan.2022.35.6.426

Effect of Osmotic Dehydration with Different Type of Agents on Hot-air Drying of Mangoes  

Hyeonbin, Oh (Dept. of Agro-Food Resources, NAAS, RDA)
Hyun-Jeong, Shim (Dept. of Agro-Food Resources, NAAS, RDA)
Chae-wan, Baek (Dept. of Agro-Food Resources, NAAS, RDA)
Hyun-Wook, Jang (Dept. of Agro-Food Resources, NAAS, RDA)
Young, Hwang (Dept. of Agro-Food Resources, NAAS, RDA)
Yong Sik, Cho (Dept. of Agro-Food Resources, NAAS, RDA)
Publication Information
The Korean Journal of Food And Nutrition / v.35, no.6, 2022 , pp. 426-434 More about this Journal
Abstract
In this study, the effect of osmotic drying conditions of mangoes on hot air drying was investigated. Four different osmotic agents of 60 Brix, such as S60, SM10, HF80, and SG25, were prepared. Mango slabs were osmotically dried with the agents at a ratio of 1:4 (w/w) for up to 8 hours. SG25 showed the lowest weight reduction and moisture loss during the process. As a result of hot-air drying, all samples showed a high correlation with the Page model (0.9761~0.9997), and the required drying time of all samples that were osmotically dried was reduced compared to the non-osmotically dried group. After hot-air drying, the pH value increased according to the drying temperature. The L, a, and b values and the total polyphenol content also decreased. Through this study, the possibility of osmotic drying was confirmed to increase the efficiency of hot air drying of mangoes, which is expected to contribute to the industrial use of domestic mangoes.
Keywords
hot-air drying; mango; osmotic dehydration; polyphenol content; thin-layer drying model;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mei S, Ma H, Chen X. 2021. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 149:111997
2 Page GE. 1949. Factors influencing the maximum rate of air drying shelled corn in thin-layers. Master's Thesis, Purdue Univ. West Lafayette. IN
3 Pattanapa K, Therdthai N, Chantrapornchai W, Zhou W. 2010. Effect of sucrose and glycerol mixtures in the osmotic solution on characteristics of osmotically dehydrated mandarin cv. (Sai-Namphaung). Int J Food Sci Technol 45:1918-1924   DOI
4 Peng Y, Zhao J, Wen X, Ni Y. 2022. The comparison of microwave thawing and ultra-high-pressure thawing on the quality characteristics of frozen mango. Foods 11:1048
5 Roberts JS, Kidd DR, Padilla-Zakour O. 2008. Drying kinetics of grape seeds. J Food Eng 89:460-465   DOI
6 Santos FSD, de Figueiredo RMF, Queiroz AJDM, Santos DDC. 2017. Drying kinetics and physical and chemical characterization of white-fleshed 'pitaya' peels. Rev Bras Eng Agric Ambiental 21:872-877   DOI
7 Sehrawat R, Nema PK, Kaur BP. 2018. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT 92:548-555   DOI
8 Shin DS, Yoo YM, Kim HY, Han GJ. 2015. Determine the effects of drying temperature on the quality change and antioxidant activity characteristics of blueberry. Korean J Food Preserv 22:505-511   DOI
9 Shinde B, Ramaswamy HS. 2020. Evaluation of mass transfer kinetics and quality of microwave-osmotic dehydrated mangocubes under continuous flow medium spray (MWODS) con-ditions in sucrose syrup as moderated by dextrose and maltodextrin supplements. Dry Technol 38:1036-1050   DOI
10 Simpson R, Ramirez C, Nunez H, Jaques A, Almonacid S. 2017. Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends Food Sci Technol 62:194-201   DOI
11 Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144-158   DOI
12 So SA, Kim JW, Kim AN, Park CY, Lee KY, Rahman MS, Choi SG. 2016. Effect of pre-soaking in salt and sugar solutions before air drying on quality characteristics of dried apples. Korean J Food Nutr 29:808-817   DOI
13 Vega-Galvez A, Puente-Diaz L, Lemus-Mondaca R, Miranda M, Torres MJ. 2014. Mathematical modeling of thin-layer drying kinetics of Cape gooseberry (Physalis peruvianaL.). J Food Process Preserv 38:728-736   DOI
14 Wang Z, Sun J, Chen F, Liao X, Hu X. 2007. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng 80:536-544   DOI
15 Zhu J, Liu Y, Zhu C, Wei M. 2022. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT 154:112829
16 Akther S, Sultana A, Badsha MR, Rahman MM, Alim MA, Amin AM. 2020. Physicochemical properties of mango (Amropali cultivar) powder and its reconstituted product as affected by drying methods. Int J Food Prop 23:2201-2216   DOI
17 Andres A, Fito P, Heredia A, Rosa EM. 2007. Combined drying technologies for development of high-quality shelf-stable mango products. Dry Technol 25:1857-1866   DOI
18 Chauhan OP, Singh A, Singh A, Raju PS, Bawa AS. 2011. Effects of osmotic agents on colour, textural, structural, thermal, and sensory properties of apple slices. Int J Food Prop 14:1037-1048
19 Buzrul S. 2022. Reassessment of thin-layer drying models for foods: A critical short communication. Processes 10:118
20 Castillo-Girones S, Masztalerz K, Lech K, Issa-Issa H, Figiel A, Carbonell-Barrachina AA. 2021. Impact of osmotic dehydration and different drying methods on the texture and sensory characteristic of sweet corn kernels. J Food Process Preserv 45:e15383
21 Choi HD, Lee HC, Kim YS, Choi IW, Park YK, Seog HM. 2008. Effect of combined osmotic dehydration and hot-air drying on the quality of dried apple products. Korean J Food Sci Technol 40:36-41
22 Choi JY, Kim J, Kim J, Jeong S, Yun KJ, Kim J, Moon JT, Moon KD. 2021. Quality characteristics of hot-air dried 'Darae' (Actinidia arguta) with different sugar osmotic dehydration pretreatment. Korean J Food Preserv 28:325-335   DOI
23 Delfiya DSA, Prashob K, Murali S, Alfiya PV, Samuel MP, Pandiselvam R. 2022. Drying kinetics of food materials in infrared radiation drying: A review. J Food Process Eng 45:e13810
24 Devic E, Guyot S, Daudin JD, Bonazzi C. 2010. Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples. J Agric Food Chem 58:606-614   DOI
25 Ghasemi J, Moradi M, Karparvarfard SH, Golmakani MT, Khaneghah AM. 2021. Thin layer drying kinetics of lemon verbena leaves: A quality assessment and mathematical modeling. Qual Assur Saf Crop Foods 13:59-72   DOI
26 Hong JH, Youn KS, Choi YH. 1998. Optimization for the process of osmotic dehydration for the manufacturing of dried kiwifruit. Korean J Food Sci Technol 30:348-355
27 Jain D, Wang J, Liu F, Tang J, Bohnet S. 2017. Application of non-enzymatic browning of fructose for heating pattern determination in microwave assisted thermal pasteurization system. J Food Eng 210:27-34   DOI
28 Hur YJ, Kim GJ, Song D, Yoon JA, Chung KH, An JH. 2018. Effects of drying methods on the quality characteristics and antioxidant activity of pumpkin (Cucurbita moschataDuch.). Korean J Food Nutr 31:933-939   DOI
29 Hutchinson D, Otten L. 1983. Thin-layer air drying of soybeans and white beans. Int J Food Sci Technol 18:507-522   DOI
30 Inyang UE, Oboh IO, Etuk BR. 2018. Kinetic models for drying techniques-food materials. Adv Chem Eng Sci 8:27-48   DOI
31 Ji ST, Youm JW, Yoo JY. 2018. A feasibility study on the cultivation of tropical fruit in Korea: Focused on mango. J Korea Acad Ind Coop Soc 19:252-263
32 Karacabey E, Buzrul S. 2017. Modeling and predicting the drying kinetics of apple and pear: Application of the Weibull model. Chem Eng Commun 204:573-579   DOI
33 Khubber S, Chaturvedi K, Gharibzahedi SMT, Cruz RMS, Lorenzo JM, Gehlot R, Barba FJ. 2020. Non-conventional osmotic solutes (honey and glycerol) improve mass transfer and extend shelf life of hot-air dried red carrots: Kinetics, quality, bioactivity, microstructure, and storage stability. LWT 131:109764
34 Khuwijitjaru P, Somkane S, Nakagawa K, Mahayothee B. 2022. Osmotic dehydration, drying kinetics, and quality attributes of osmotic hot air-dried mango as affected by initial frozen storage. Foods 11:489
35 Kim GC, Lee SY, Kim KM, Kim Y, Kim JS, Kim HR. 2011. Quality characteristics of hot-air and freeze dried apples slices after osmotic dehydration. J Korean Soc Food Sci Nutr 40:848-852   DOI
36 Macedo LL, Vimercati WC, da Silva Araujo C, Saraiva SH, Teixeira LJQ. 2020. Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. J Food Process Eng 43:e13451
37 Kim MK, Kim MH, Yu MS, Song YB, Seo WJ, Song KB. 2009. Dehydration of carrot slice using polyethylene glycol and maltodextrin and comparison with other drying methods. JKorean Soc Food Sci Nutr 38:111-115   DOI
38 Kotovicz V, Ellendersen LSN, das Merces Clarindo M, Masson ML. 2014. Influence of process conditions on the kinetics of the osmotic dehydration of yacon (Polymnia sonchifolia) in fructose solution. J Food Process Preserv 38:1385-1397   DOI
39 Liu J, Li X, Yang Y, Wei H, Xue L, Zhao M, Cai J. 2021. Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Sci Nutr 9:4568-4577   DOI
40 Maldonado-Celis ME, Yahia EM, Bedoya R, Landazuri P, Loango N, Aguillon J, Restrepo B, Guerrero Ospina JC. 2019. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Front Plant Sci 10:1073