Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.10.769

Development of Mg-xFe2O3-yNi Hydrogen-Storage Alloys by Reactive Mechanical Grinding  

Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Kwon, Sung Nam (Department of Hydrogen and Fuel Cells, Graduate School, Chonbuk National University)
Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.10, 2012 , pp. 769-774 More about this Journal
Abstract
Mg-x wt% $Fe_2O_3-y$ wt% Ni samples were prepared by reactive mechanical grinding in a planetary ball mill, and their hydrogen-storage properties were investigated and compared. Activations of $Mg-5Fe_2O_3-5Ni$ was completed after one hydriding (under 12 bar $H_2$) - dehydriding (in vacuum) cycle at 593 K. At n = 2, $Mg-5Fe_2O_3-5Ni$ absorbed 3.43 wt% H for 5 min, 3.57 wt% H for 10 min, 3.76 wt% H for 20 min, and 3.98 wt% H for 60 min. Activated $Mg-10Fe_2O_3$ had the highest hydriding rate, absorbing 2.99 wt% H for 2.5 min, 4.86 wt% H for 10 min, and 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$. Activated $Mg-10Fe_2O_3-5Ni$ had the highest dehydriding rate, desorbing 1.31 wt% H for 10 min, 2.91 wt% H for 30 min, and 3.83 wt% H for 60 min at 593 K under 1.0 bar $H_2$.
Keywords
hydrogen absorbing materials; mechanical alloying/milling; microstructure; X-ray diffraction; $Fe_2O_3$ addition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Y. Song, S. H. Hong, I. H. Kwon, S. N. Kwon, C. G. Park, and J. S. Bae, J. Alloys Compd. 398, 283 (2005).
2 M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, and J. S. Bae, Int. J. Hydrogen Energy 31, 43 (2006).
3 M. Y. Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. Mater. Int. 5, 485 (1999).
4 J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
5 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).
6 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).
7 S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).
8 K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011).
9 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).
10 F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).
11 M. Terzieva, M. Khrussanova, P. Peshev, and D. Radev, Int. J. Hydrogen Energy 20, 53 (1995).
12 M. Y. Song, J. Mater. Sci. 30, 1343 (1995).
13 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).
14 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).
15 M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).
16 E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).
17 M. Y. Song, J. Mater. Sci. 30, 1343 (1995).
18 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).
19 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).
20 M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).
21 J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).