Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.10.703

Effects of the Ordering Reaction on High Temperature Mechanical Behavior in Alloy 600  

Kim, Sung Soo (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
Kim, Dae Whan (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
Kim, Young Suk (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
Publication Information
Korean Journal of Metals and Materials / v.50, no.10, 2012 , pp. 703-710 More about this Journal
Abstract
The effects of the ordering reaction on high temperature mechanical behavior is investigated by tensile tests at $2{\times}10^{-2}/s-3.3{\times}10^{-5}/s$ up to $745^{\circ}C$. The tensile deformed region is examined by differential scanning calorimeter (DSC), TEM, and high resolution neutron diffraction (HRPD). The results showed that a plateau of tensile strength appeared at $150-500^{\circ}C$ whereas the elongation minimum occurred at about $600^{\circ}C$. This suggests that the occurrence of a plateau does not cause the elongation minimum. The temperature of the elongation minimum decreases with the strain rate. HRPD results show a lattice contraction in the tensile deformed specimen at the temperature of the plateau occurring region. The plateau of tensile strength, the lattice contraction, and the occurrence of serration appeared in the same temperature region.
Keywords
alloy 600; ordering reaction; strain induced ordering; lattice contraction; serration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alexandreanu and G. S. Was, Corrosion 59, 705 (2003).
2 C. Crawford and G. S. Was, Metal. Mater. Trans. 23, 1195 (1992).
3 F. Vaillant, J. Boursier, L. Legras, B. Yrieix, E. Lemarie, J. Champredonde, and C. Amzallag, in 13rd Environmental Degradation of Materials in Nuclear Power Systems, Paper No. 0046, Vancouver, Canada (2007).
4 S. Kim and J. S. Kim, J. Kor. Inst. Met. & Mater. 44, 473 (2006).
5 S. S. Kim, I. H. Kook, and J. S. Kim, Mat. Sci. Eng. 279, 142 (2000).
6 D. A. Porter and K. E. Easterling, Van Nostrand Reinhold Company 263, 358 (1981).
7 P. Gordon, Principles of Phase Diagrams in Materials Science, 107, McGraw- Hill Book Company (1968).
8 R. E. Smallman, Modern Physical Metallurgy, 4th ed., Butterworths, 119, 130 (1985).
9 C. Barrett and T. B. Massalski, Structure of Metals 3rd ed. pp.275-305, 533, Pergamon Press (1980).
10 T. B. Massalski, J. L. Murray, L. H. Benett, and H. Baker, Binary Alloy Phase Diagrams, ASM, 843 (1986).
11 M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tagaki, T. Saburi, S. Nenno, and H. Nishiyama, Trans. Japan Inst. Metals 10, 365 (1969).
12 S. S. Kim, J. S. Kim, S. S. Hwang, and H. P. Kim, Proceedings of Korean Nuclear Society 2008 Fall Meeting, p.237 (2008)
13 S. Kim, D. G. Park, and Y. M. Cheong, Korean J. Met. Mater. 49, 462 (2011)
14 G. E. Dieter, Mechanical Metallurgy, 3rd ed., 201 (1986).