Browse > Article

Application of Nanoparticles for Materials Recognition using Peptide Phage Display Technique- Part I: Preliminary study using LaPO4 and TiO2 nanoparticles  

Lee, Chang-Woo (Division of Materials and Chemical Engineering, Hanyang University)
Kim, Min-Jung (Division of Materials and Chemical Engineering, Hanyang University)
Standaert, R. (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory)
Kim, Seyeon (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory)
Owens, E. (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory)
Yan, Jun (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory)
Choa, Yong-Ho (Division of Materials and Chemical Engineering, Hanyang University)
Doktycz, M. (Biological and Nanoscale Systems Group (BNSG), Bio Sciences Division, Oak Ridge National Laboratory)
Lee, Jai-Sung (Division of Materials and Chemical Engineering, Hanyang University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.1, 2008 , pp. 6-12 More about this Journal
Abstract
Peptides with specific sequences against $LaPO_4$ and $TiO_2$ nanoparticles were discovered through peptide phage display technique as an application to biomolecular recognition of inorganic materials. Sequencing results showed that a motif consisting of serine and proline was commonly expressed in specific sequences. It was postulated that serine directly bound to nanoparticles using its terminal hydroxyl (OH) group. In this sense, oxygen atom seemed to work as a ligand to metal ions and hydrogen atom as a H-bond donor, was thought to bind to the oxygen atoms or the hydroxyl groups on particle surface. Also, it was expected that proline assists serine to make an ideal van der Waals contact between serine and nanoparticles, which optimizes the binding of peptide onto surface.
Keywords
peptide phage display; bio-panning; materials recognition; $LaPO_4$ nanoparticles; $TiO_2$ nanoparticles;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Brzeska, M. Panhorst, P. B. Kamp, J. Schotter, G. Reiss, A. Phler, A. Becker, H. Brckl, J. Biotechnol. 112, 25 (2004).   DOI   ScienceOn
2 F. Meiser, C. Cortez, F. Caruso, Angew. Chem. Int. Ed. 43, 5954 (2004).   DOI   ScienceOn
3 C. Cui, H. Liu, Y. Li, J. Sun, R. Wang, S. Liu, and A. L. Greer, Mater. Lett. 59, 3144 (2005).   DOI   ScienceOn
4 Y. Fujishiro, H. Ito, T. Sato, A. Okuwaki, J. Alloys. Compounds 252, 103 (1997).   DOI
5 U. Rambabu and S. Buddhudu, Opt. Mater 17, 401 (2001).   DOI   ScienceOn
6 J. L. Arias, V. Gallardo, S. A. Gmez-Lopera, R. C. Plaza, A. V. Delgado, J. Controlled Release 77, 309 (2001).   DOI   ScienceOn
7 J. Siepmann, N. Faisant, J. Akiki, J. Richard, J. P. Benoit, J. Controlled Release 96, 123 (2004).   DOI   ScienceOn
8 M. Shimomura, T. Abe, Y. Sato, K. Oshima, T. Yamauchi, S. Miyauchi, Polymer 44, 3877 (2003).   DOI   ScienceOn
9 H. S. Park, D. H. Kim, S. J. Kim and K. S. Lee, J. Kor. Inst. Met. & Mater. 42, 918 (2004).
10 D. Siodłak, M. A. Broda, B. Rzeszotarska, J. Molecular Structure (Theochem) 668, 75 (2004).   DOI   ScienceOn
11 http://webhost.bridgew.edu/fgorga/proteins/aminoacids.htm
12 R. R. Chianelli and J. R. Dahn, J. Electrochem. Soc. 144, 2045 (1994).   DOI   ScienceOn
13 R. C. O' Handley, Modern Magnetic Materials-Principles and Applications, John Wiley & Sons, Inc., NY, U.S. (2001).
14 S. J. Oh, C. J. Choi, S. J. Kwon, S. H. Jin and B. K. Kim, J. Kor. Inst. Met. & Mater. 41, 432 (2003).
15 Tech. Bull., Ph. D.TM Phage Display Peptide Library Kits, New England Biolabs, Inc. (2004).
16 R. R. Naik, S. E. Jones, C. J. Joseph, C. McAuliffe, R. A.Vaia, and M. O. Stone, Adv. Func. Mater. 14, 25 (2004).   DOI   ScienceOn
17 Powder diffraction file, card 21-1272. JDPDS-ICDD, Swarthmore, PA (1997).
18 S. J. Grabowski, W. A. Sokalski, J. Leszczynski, Chem.Phys 337, 68 (2007).   DOI   ScienceOn
19 A. P. Alivisatos, Science 271. 933 (1996).   DOI   ScienceOn
20 J. S. Lee, S. T. Oh, J. H. Yu, Trends Met. Mater. Eng. 14, 24 (2001).
21 G. Coln, M. C. Hidalgo and J. A. Navio, Catal. Today, 76. 91 (2002).   DOI   ScienceOn
22 P. Zhu, Y. Masuda, K. Koumoto, Biomater. 25, 3915 (2004).   DOI   ScienceOn
23 S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O'Brien, C. B. Murray, J. R. Kirtley, and G. A. Held, J. Phys. Chem. 109, 13030 (2005).   DOI
24 K. K. Lee, Y. C. Kang, I. W. Zeon, K. Y. Jung, and H. D. Park, Korean J. Mater. Res., 12, 761 (2002).   DOI
25 X. Liu, P. K. Chu, C. Ding, Mater. Sci. Eng. R, 47, 49 (2004).   DOI   ScienceOn
26 S. F. Parmley and G. P. Smith, Gene 73, 305 (1988).   DOI   ScienceOn
27 J. -F. Chen, H. -M. Ding, J. -X. Wang, L. Shao, Biomater. 24, 723 (2004).
28 D. Tanyola, A. R. Zdural, React. Funct. Polymer 43, 2 (2000).
29 Powder diffraction file, card 46-1326. JDPDS-ICDD, Swarthmore, PA (1997).