Browse > Article

Ionic Equilibria in Mixed Solutions of Cuprous and Cupric Chloride  

Lee, Man Seung (Department of Advanced Materials Science & Engineering, Mokpo National University)
Nicol, M.J. (Extractive Metallurgy, Murdoch University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.1, 2008 , pp. 20-25 More about this Journal
Abstract
The ionic equilibira in mixed solutions of cuprous and cupric chloride were analyzed by considering chemical equilibria, mass and charge balance equations. The activity coefficients of solutes were calculated by using Bromley equation. Required thermodynamic constants and interaction parameters were evaluated from the data reported in the literature. The effect of NaCl and CuCl concentrations on the pH and potential of the mixed solutions was explained in terms of the variation in the concentration of solutes and in the activity of hydrogen ion. The calculated pH values of the mixed solutions agreed well with the measured values. However, the calculated values for the potential of the mixed solutions were lower than the measured values, indicating the necessity of considering the complex formation between cuprous and chloride ion, such as $Cu^2Cl{_4}^{2-}$ and $Cu_3Cl{_6}^{3-}$.
Keywords
CuCl; $CuCl_2$; HCl; Ionic equilbira; pH; Eh;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 F. Carranza, N. Iglesias, A. Mazuelos, I. Palencia, and R. Romero, Hydrometallurgy 71, 413 (2004).   DOI   ScienceOn
2 G. W. Mcdonald, T. J. Udovic, J. A. Dumesic, and S. H. Langer, Hydrometallurgy 13, 125 (1984).   DOI   ScienceOn
3 G. W. Mcdonald, and S. H. Langer, Metallurgical Transactions B, 14B, 559 (1983).
4 R. von Bonsdorff, N. Järvenpää, J. Aromaa, O. Forsén, and O. Hyvärinen, M. H. Barker, Hydrometallurgy 77, 155 (2005).   DOI   ScienceOn
5 M. Wang, and Y. Zhang, and M. Muhammed, Hydrometallurgy 45, 53 (1997).   DOI   ScienceOn
6 M. Lundström, J. Aromaa, O. Forsén, O. Hyvarinen, and M.H. Barker, Hydrometallurgy 77, 89 (2005).   DOI   ScienceOn
7 M. M. Antonijeviæ, G.D. Bogdanoviæ, Hydrometallurgy 73, 245 (2004).   DOI   ScienceOn
8 J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, pp. 211-212, New York (1986).
9 M. S. Lee, Y. J. Oh, J. Kor. Inst. Met. & Mater. 42, 767 (2004).
10 I. Palencia, R. Romero, A. Mazuelos, and F. Carranza, Hydrometallurgy 66, 85 (2002).   DOI   ScienceOn
11 R. T. Kimura, P. A., Haunschild, and K. C. Liddell, Met. Trans. B, 15B, 213 (1984).