Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.9.475

Growth of MnS Thin Film on c-Sapphire by Pulsed Laser Deposition  

Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University)
Publication Information
Korean Journal of Materials Research / v.17, no.9, 2007 , pp. 475-479 More about this Journal
Abstract
Pulsed laser deposition was utilized to grow MnS thin films on c-sapphire substrate using a KrF excimer laser at growth temperatures that ranged from room temperature to $700^{\circ}C$. The results of X-ray diffraction (XRD) and UV-visible spectroscopy were employed to investigate the structural and optical properties of the MnS films. While the growth rate decreased as $T_s$ increased, the overall quality of the film improved. The highest quality MnS film was obtained at $700^{\circ}C$. Variations in the $T_s$ resulted in the MnS films exhibiting different growth mechanisms. The oriented (200) rocksalt MnS film was grown at room temperature. In the case of higher $T_s,\;200{\sim}500^{\circ}C$, the films consisted of mixed phases of rocksalt and wurtzite. The main structure of the films was altered to (111) rocksalt when the temperature was increased to in excess of $600^{\circ}C$. This behavior may very well be the result of elements such as surface energy and atomic arrangement during the growth process. The optical band gap of the obtained ${\alpha}-MnS$ film was estimated to be 3.32 eV.
Keywords
MnS thin film; Pulsed laser deposition; Growth mechanism;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Yoshiyama, S. Tanaka, Y. Mikami, S. Ohshio, J. Nishiura, H. Kawakami and H. Kobayashi, J. Cryst. Growth, 86, 56 (1988)   DOI   ScienceOn
2 O. Madelung, in Landolt-Bornsten Semiconductors III/17g, Physics of Non-tetrahedrally Bonded Binary Compounds III (Springer-Verlag, Berlin, 1984)
3 S. W. Kennedy, K. Harris and E. Summerville, J. Solid State Chem., 31, 355 (1980)   DOI   ScienceOn
4 W. Giriat, J. K. Furdyna, J. K. Furdyna and J. Kossut, in Semiconductors and Semimetals (Academic Press, San Diego, CA, 1988) p.25
5 D. Hobbs and J. Hafner, J. Phys.: Condens. Matter, 11, 8197 (1999)   DOI   ScienceOn
6 O. Goede, W. Heimbrodt and V. Weinhold, Phys. Status Solidi (b), 136, K49 (1986)   DOI   ScienceOn
7 R. Tappero, P. D' Areo and A. Lichanot, Chem. Phys. Lett., . 273, 83 (1997)   DOI   ScienceOn
8 A. N. Kravtsova, I. E. Stekhin and A. V. Soldatov, Phys. Rev. B, 69, 134109 (2004)   DOI
9 L. Corliss, N. Elliott and J. Hastings, Phys. Rev., 104, 924 (1956)   DOI
10 C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, M. Muller, K. Diesner and H. Tributsch, Thin Solid Films, 330, 70 (1998)   DOI   ScienceOn
11 M. Okajima and T. Tohda, J. Cryst. Growth, 117, 810 (1992)   DOI   ScienceOn
12 O. Goede, W. Heimbrodt, V. Weinhold, E. Schnurer and H. G. Eberle, Phys. Status Solidi (b), 143, 511 (1987)   DOI   ScienceOn
13 Y. Zhang, H. Wang, B. Wang, H. Yan and M. Yoshimura, J. Cryst. Growth, 243, 214 (2002)   DOI   ScienceOn
14 S. A. Mayen-Hernandez, S.J. Sandoval, R.C. Perez, G.T. Delgado, B.S. Chao and O.J. Sandoval, J. Cryst. Growth, 256, 12 (2003)   DOI   ScienceOn
15 B. J. Skromme, Y. Zhang and D. J. Smith and S. Sivananthan, Appl. Phys. Lett., 67, 2690 (1995)   DOI   ScienceOn
16 M. A. Akhter, Thin Solid Films, 158, 83 (1988)