Browse > Article
http://dx.doi.org/10.14697/jkase.2013.33.5.1041

The Design of Integrated Science Curriculum Framework Based on Big Ideas  

Bang, Dami (The Catholic University of Korea)
Park, Eunmi (Gwangnam High School)
Yoon, Heojeong (Ewha Womans University)
Kim, Ji (Doonchon Middle School)
Lee, Yoonha (Daeyoung Middle School)
Park, Jieun (Ewha Womans University)
Song, Joo-Yeon (Korean Educational Development Institute)
Dong, Hyokwan (Korea Institute for Curriculum and Evaluation)
Shim, Byeong Ju (Seoul National University Elementary School)
Lim, Hee-Jun (Gyeongin National University of Education)
Lee, Hyun-Suk (Korea Foundation for the Advancement of Science & Creativity)
Publication Information
Journal of The Korean Association For Science Education / v.33, no.5, 2013 , pp. 1041-1054 More about this Journal
Abstract
Big ideas are overarching principles that help students to build a holistic understanding of domain-specific knowledge and assimilate individual facts and theories. This study aims to design a standard-based integrated science curriculum framework based on Big Ideas. The core contents were extracted by analysing the 2009 National Science Standards curriculum of primary and middle schools. Four Big Ideas, 'diversity,' 'structure,' 'interaction,' and 'change,' were generated after the process of examination and categorization of core contents. The scientific facts, disciplinary concepts, and interdisciplinary concepts of every scientific domains included in each Big Idea are represented as a knowledge pyramid. Essential questions guiding the direction of curriculum design were proposed on each Big idea. Based on the framework, teaching modules for 'structure' were developed for grades 5~6.
Keywords
big ideas; standard based integrated science curriculum framework; intergrated science education; curriculum design;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 교육인적자원부 (2007). 과학과 교육과정-교육인적자원부 고시 제2007-79호〔별책 9). 서울: 대한교과서 주식회사
2 강호감, 김은진, 노석구, 박현주, 손정우, 이희순 (2007). 통합과학교육. 파주: 한국학술정보.
3 곽병선 (1983). 교육과정. 서울: 주영 문화사.
4 교육과학기술부 (2011). 2009 개정교육과정에 따른 과학과 교육과정. 교육과학기술부 고시 제 2011-361호.
5 권난주, 안재홍 (2012). 융합 및 통합과학교육 관련 국내 연구 동향 분석. 한국과학교육학회지, 32(2), 265-278.
6 김남희, 한화정, 홍보라, 심규철 (2012). 고등학교'과학'과목의 생명과학 관련 학습 내용에 관한 과학 융합 요소와 STEAM 요소 분석 및'과학'과목의'생명과학 I','생명과학 II'와의 연계성. 생물교육, 40(1), 121-131.
7 윤회정, 윤원정, 우애자 (2011). 2009 개정 교육과정과 융합형 과학 교과서에 대한 고등학교 과학교사들의 인식. 교과교육학연구, 15(3), 757-776.
8 손연아 (2009). 과학과 통합교육과정의 이해와 운영의실제. 한국통합교육과정학회 학술발표논문집, 4, 43-77.
9 손연아, 이학동 (1999). 통합과학교육의 방향 설정을 위한 이론적 고찰. 한국과학교육학회지, 19(1), 41-61.
10 윤종하 (1997). 통합적 접근에 의한 공통과학 에너지단원의 교수자료 개발. 한국교원대학교 대학원 석사학위논문.
11 이경민, 최일선 (2009). 통합교육과정의 효과적 운영.서울: 학지사.
12 이정모 (2005). 미래 융합과학기술의 틀과 인지과학.과학사상, 1, 22-42.
13 Cervetti, G. N., Barber, J., Dorph, R., Pearson, P. D., & Goldschmidt, P. G. (2012). The impact of an integrated approach to science and literacy in elementary school classrooms. Journal of Research in Science Teaching, 49(5), 631-658.   DOI   ScienceOn
14 조희형, 박승재 (1994). 과학론과 과학교육. 서울: 교육과학사.
15 최미화, 최병순 (1999). 통합주제를 중심으로 한 중학교 수준의 통합과학 내용 구성 방안. 한국과학교육학회지,19(2), 204-216.
16 Bruner, J. S. (2010). 교육의 과정(이홍우 역.). 서울:배영사(원저 1960 출판)
17 Cothron, J. H. (2009). Integrating nanoscience into virginia's standards of learning for science. A draft document developed by the mathscience innovation center for use in advocating revisions to the science standards. Available at: http://www.seas.virginia.edu/admin/diversity/k12/files/Integr ating-Nano-VA-SOLs2009.pdf
18 Duschl, R. A., Schweingruber, H. A., & Shouse, A. (2007). Taking science to school: Learning and teaching science in grades K-8(Eds.). Washington, DC.: National Academies Press.
19 Donna, M. W., & James, W. S. (2003). 통합교육과정의 이론과 실제(강현석, 박영무, 조영남, 허영식, 이종원 역.). 서울: 양서원(원저 1997 출판)
20 Drake, S. M., & Burns, R. C. (2004). Meeting Standards through integrated curriculum. Alexandria, VA: ASCD.
21 Drake, S. M. (2007). Creating standards-based integrated curriculum: Aligning curriculum, content, assessment and instruction. Corwin Press, Inc.
22 Erickson, H. L. (2002). Concept-based curriculum and instruction. Thousand Oaks, CA: Corwin Press.
23 Fogarty, R. (1991). Ten ways to integrated curriculum. Educational Leadership, 49(2), 61-65.
24 Gehrke, N. J. (1998). A look at curriculum integration from the bridge. Curriculum Journal, 9(2), 247-260.   DOI   ScienceOn
25 McTighe. J. & Wiggins, G.(2008). 거꾸로 생각하는 교육과정 개발-교사 연수를 위한 워크북(강현석, 이원희,박영무, 최호성, 박창언 역.). 서울: 학지사(원저 2004 출판)
26 Morrow, L. M., Pressley, M., Smith, J. K., & Smith, M. (1997). The effect of literature-based program integrated into literacy and science instruction with children from diverse backgrounds. Reading Research Quarterly, 32(1), 54-76.   DOI   ScienceOn
27 National Research Council (2010). A framework for K- 12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: National Academy Press.
28 Nordine, J., Krajcik, J., & Fortur, D. (2011). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670-699.   DOI   ScienceOn
29 Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47(7), 768-787.   DOI   ScienceOn
30 Reeves, D. (2002). Making standards work. CA: Center for performance assessment.
31 Rennie, L. J., Venville, G., & Wallace, J. (2011). Learning science in an integrated classroom: Finding balance through theoretical triangulation. Journal of Curriculum Studies, 43(2), 139-162.   DOI   ScienceOn
32 Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20-26.
33 Sanders, M., Kwon, H., Park, K., & Lee, H. (2011). Integrative STEM (science, technology, engineering, and mathematics) education: contemporary trends and issues. SERI Journal, 59(3), 729-762.
34 Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). Implications of research on children's learning for standards and assessment: A proposed learning progression for matter and the atomic molecular theory. Focus Article. Measurement: Interdisciplinary Research and Perspectives, 14, 1-98.
35 Wiggins, G., & McTighe, J. (2005). Understanding by design(Expanded 2nd Ed.). Alexandria, VA: ASCD.