Browse > Article
http://dx.doi.org/10.4313/TEEM.2006.7.4.173

A Study on Lateral Distribution of Implanted Ions in Silicon  

Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
Kim, Hyung-Min (Department of mechanical System Design Engineering, Kyonggi University)
Publication Information
Transactions on Electrical and Electronic Materials / v.7, no.4, 2006 , pp. 173-179 More about this Journal
Abstract
Due to the limitations of the channel length, the lateral spread for two-dimensional impurity distributions is critical for the analysis of devices including the integrated complementary metal oxide semiconductor (CMOS) circuits and high frequency semiconductor devices. The developed codes were then compared with the two-dimensional implanted profiles measured by transmission electron microscope (TEM) as well as simulated by a commercial TSUPREM4 for verification purposes. The measured two-dimensional TEM data obtained by chemical etching-method was consistent with the results of the developed analytical model, and it seemed to be more accurate than the results attained by a commercial TSUPREM4. The developed codes can be applied on a wider energy range $(1KeV{\sim}30MeV)$ than a commercial TSUPREM4 of which the maximum energy range cannot exceed 1MeV for the limited doping elements. Moreover, it is not only limited to diffusion process but also can be applied to implantation due to the sloped and nano scale structure of the mask.
Keywords
Implantation; Chemical etching; Computer simulation and developed model; TEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. D. Yoo, C. D. Marsh, and G. R. Booker, 'Two-dimensional dopant concentration profiles from ultra-shallow junction metal-oxide-semiconductor field-effect transistors using the etch/transmission electron microscopy method', Appl. Phys. Letters, Vol. 80, No. 15, p. 2687, 2002   DOI   ScienceOn
2 Synopsys Inc., 'http://www.synopsis.com', TCAD, Taurus TSUPREM4, 2006
3 H. H. Andersen and J. F. Ziegler, 'Hydrogen, stopping power and ranges in all elements', The Stopping and Ranges of Ions in Matter edited by J. F. Ziegler, Pergamon, New York, Vol. 6, p. 64, 1977
4 U. Littmark and J. F. Ziegler, 'Handbook of range distributions for energetics ions in all elements', The Stopping and Ranges of Ions in Matter edited by J. F. Ziegler, Pergamon, New York, Vol. 6, p. 45, 1980
5 W. C. Jung, 'A study of boron profiles by high energy ion implantation in silicon', J. of KIEEME (in Korean), Vol. 15, No.4, p. 289, 2002
6 R. P. Webb and E. Maydell, 'Comparisons of fast algorithms for calculation of range profiles in layered structures', Nucl. Inst. and Meth. B, Vol. 33 p. 117, 1988   DOI   ScienceOn
7 M. A. gribelyuk, M. R. McCartney, J. Li, C. S. Murthy, P. Ronsheim, B. Doris, J. S. McMurray, S. Hegde, and d. J. Smith, 'Mapping of electrostatic potential in deep submicron CMOS devices by electron holography', Phy. Rev. Lett., Vol. 89, No. 2, p. 1, 2002
8 W.-C. Jung, 'A study of experiment and developed model by antimony high energy implantation in silicon', J. of KIEEME(in Korean), Vol. 17, No. 11, p. 1156, 2004
9 H. Ruecker, B. Henemann, R. Bath, D. Bolze, V. Melnik, D. Krueger, and R. Kurps, 'Formation of shallow source/drain extensions for metal-oxide-semiconductor field-effect', Vol. 82, No.5, p. 826, 2003   DOI   ScienceOn
10 J. P. Biersack, 'Basic physical aspects of high energy implantation', Nucl. Inst. and Meth. B, Vol. 35, p. 205, 1988   DOI   ScienceOn
11 J. F. Ziegler, 'Ion Implantation Science and Technology', Ion Implantation Technology Co., New Jersey, p. 125, 1996
12 J. D. Plummer, M. D. Deal, and P. B. Griffin, 'Silicon VLSI Technology', Prentice Hall, Inc., p. 451, 2000
13 R. C. Jaeger, 'Introduction to Microelectronic Fabrication', Prentice Hall, New Jersey, 2002
14 R. Smith, 'Atomic and Ion Collisions in Solids and at Surface', Cambridge University Press, 1997
15 W.-C. Jung, 'I-V and C-V measurements of fabricated $P^{+}/N^{+}$ junction diode in antimony doped (111) silicon', Trans. EEM, Vol. 3, No. 2, p. 10, 2002
16 J. F. Ziegler, J. P. Biersack, and U. Littmark, 'The stopping and range of ions in matter', Vol. 1, New York: Pergamon Press, p. 45, 1985
17 R. B. Fair, 'The role transient damage annealing in shallow junction formation', Nucl. Instr. and Meth. B, Vol. 37/38, p. 371, 1989   DOI   ScienceOn
18 J. F. Ziegler, 'The stopping of energetic light ions in elemental matter', J. Appl. Phys., Vol. 85, No.3, p. 1249, 1999   DOI   ScienceOn
19 J. F. Ziegler, 'SRIM 2000 manual', http://www.srim.org
20 K. M. Klein, C. Park, and A. F. Tasch, 'Ultra shallow junction formation in silicon using implantation', IEEE Trans. Electron Devices ED Vol. 39, p. 1614, 1992   DOI   ScienceOn
21 A. F. Tasch and S. K. Banerjee, 'Ultra shallow junction formation in silicon using ion implantation', Nucl. Inst. and Meth. In Phys. B, Vol. 112, p. 177, 1996   DOI   ScienceOn
22 R. Brindos, P. Keys, K. S. Jones, and M. E. Law, 'Effects of arsenic doping on {311} defect dissolution in silicon', Appl. Phys. Letters, Vol. 75, No.2, p. 229, 1999   DOI
23 H. Cerva, 'Two-dimensional delineation of shallow junctions in silicon by selective etching of transmission electron microscopy cross sections', J. Vac. Sci. Technol. B, Vol. 10, No.1, p. 491, 1992   DOI