Browse > Article

Effect of Chlorella vulgaris Intake on Antioxidative Capacity in Rats Oxidatively Stressed with Dietary Cadmium  

Kim, You-Jin (Department of Nutritional Science and Food Management, Ewha Womans University)
Jeong, Se-Won (Department of Nutritional Science and Food Management, Ewha Womans University)
Kwon, Sang-Hee (Department of Nutritional Science and Food Management, Ewha Womans University)
Kim, Mi-Kyung (Department of Nutritional Science and Food Management, Ewha Womans University)
Publication Information
Food Science and Biotechnology / v.18, no.5, 2009 , pp. 1055-1062 More about this Journal
Abstract
This study was conducted to investigate whether dietary chlorella intake could have an effect on antioxidative capacity in rats oxidatively stressed with cadmium (Cd). Sprague-Dawley rats fed dietary chlorella (0, 5, and 10%) for 4 weeks after induction of oxidative stress by exposing to Cd (200 ppm) for 8 weeks. After the oxidative stress applied, plasma and liver malondialdehyde concentrations and xanthine oxidase activities were decreased in 5% chlorella fed group compared to chlorella free group. Although liver heme oxygenase-1 protein expression was not affected by chlorella, the enzyme activity was improved in 5% chlorella fed group. Erythrocyte superoxide dismutase activity and hepatic metallothionein concentration were increased in 5% chlorella fed group. However, 10% chlorella intake had no effect on the improvement of oxidative stress-related enzymes and proteins. These findings suggest that, after induction of oxidative stress with Cd, 5% chlorella intake might improve antioxidative capacity against oxidative stress.
Keywords
Chlorella vulgaris; cadmium; antioxidative capacity; heme oxygenase-1; oxidative stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis: A review. Toxicology 192: 95-117 (2003)   DOI   PUBMED   ScienceOn
2 Hassoun EA, Stohs SJ. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks, and lactate dehydrogenase in J7774A.1 cell cultures. Toxicology 112: 219-226 (1996)   DOI   ScienceOn
3 Thijssen S, Cuypers A, Maringwa J, Smeets K, Horemans N, Lambrichts I, Van Kerkhove E. Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236: 29-41 (2007)   DOI   ScienceOn
4 Miranda MS, Sato S, Mancini-Filho J. Antioxidant activity of the microalga Chlorella vulgaris cultured on special conditions. Bull. Chim. Farm. 140: 165-168 (2001)   PUBMED
5 Negishi T, Rai H, Hayatsu H. Antigenotoxic activity of natural chlorophylls. Mutat. Res. 376: 67-100 (1997)
6 Son YA, Shim JA, Hong S, Kim MK. Intake of Chlorella vulgaris improves antioxidative capacity in rats oxidatively stressed with dietary cadmium. Ann. Nutr. Metab. 54: 7-14 (2009)   DOI   ScienceOn
7 Kim KR, Chai YM, Rhee SJ. Effects of vitamin E on liver cytochrome P450 content and xanthine oxidase activity in acute cadmium-poisoned rats. J. Korean Soc. Food Sci. Nutr. 28: 1355- 1363 (1999)
8 Kim MJ, Hong JH, Rhee SJ. Effect of vitamin E on cadmium accumulation and excretion in chronic cadmium poisoned rats. Korean J. Nutr. 36: 691-698 (2003)   과학기술학회마을
9 KFDA. Health Functional Food Code. Korea Food & Drug Administration, Seoul, Korea (2006)
10 Roy D, Pathak DN, Singh R. Effects of chlorpromazine on the activities of antioxidant enzymes and lipid peroxidation in the various regions of aging rat brain. J. Neurochem. 42: 628-633 (1984)   DOI   PUBMED
11 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265- 275 (1951)   PUBMED
12 McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055 (1969)   PUBMED
13 Han JG, Kang GG, Kim JK, Kim SH. The present status and future of chlorella. Food Sci. Indus. 35: 64-69 (2002)
14 Guzman S, Gato A, Galleja JM. Antiinflammatory, analgesic, and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 15: 224-230 (2001)   DOI   ScienceOn
15 Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radical Bio. Med. 14: 325-337 (1993)   DOI   ScienceOn
16 Matsuura E, Nemoto T, Hozumi H, Izumi K, Saito Y, Ishida H, Fukimbara T, Kawahara H. Effect of chlorella on rats with iron deficient anemia. Kitasato Arch. Exp. Med. 64: 193-204 (2001)
17 Onosaka S, Cherian MG. Comparison of metallothionein determination by polarographic and cadmium-saturation methods. Toxicol. Appl. Pharmacol. 63: 270-274 (1982)   DOI   ScienceOn
18 Srisook K, Jung NH, Kim BR, Cha SH, Kim HS, Cha YN. Heme oxygenase-1-mediated partial cytoprotective effect by NO on cadmium-induced cytotoxicity in C6 rat glioma cells. Toxicol. In Vitro 19: 31-39 (2005)   DOI   ScienceOn
19 Gropper SS, Smith JL, Groff JL. The antioxidant nutrients, reactive species, and disease. pp. 368-377. In: Advanced Nutrition and Human Metabolism. 4th ed. Thomson Wadsworth, Belmont, CA, USA (2005)
20 Sareen SG, Jack LS, James LG. Microminerals. pp. 417-484. In: Advanced Nutrition and Human Metabolism. 4th ed. Thomson Wadsworth, Belmont, CA, USA (2005)
21 Merchant RE, Andre CA. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern. Ther. Health M. 7: 79-91 (2001)   PUBMED
22 Yoon CG. A modified colorimetric assay for xanthine oxidase in rat liver extracts. J. Keimyung Research, Keimyung Junior College, Daegu, Korea 2: 295-308 (1984)
23 Vijayavel K, Anbuselvam C, Balasubramanian MP. Antioxidant effect of the marine algae Chlorella vulgaris against naphthaleneinduced oxidative stress in the albino rats. Mol. Cell. Biochem. 303: 39-44 (2007)   DOI   PUBMED
24 Flohe L, Becker R, Brigelius R, Lengfelder E, Otting F. Convenient assays for superoxide dismutase. pp. 287-293. In: CRC Handbook of Free Radicals and Antioxidants in Biomedicine. CRC Press, Inc., Boca Raton, FL, USA (1992)
25 Taketani S, Kohno H, Yshinaga T, Tokunaga R. The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett. 245: 173-176 (1989)   DOI   PUBMED   ScienceOn
26 Liu J, Kadiiska MB, Corton JC, Qu W, Waalkes MP, Mason RP, Liu Y, Klaassen CD. Acute cadmium exposure induces stress-related gene expression in wild type and metallothionein-I/II null mice. Free Radical Bio. Med. 32: 525-535 (2002)   DOI   ScienceOn
27 Kwan OR, Kim MK. Effect of dietary protein and calcium levels on metallothionein and histopathological changes during cadmium intoxication in rats. Korean J. Nutr. 25: 360-378 (1992)   과학기술학회마을
28 Liu W, Li M, Huang F, Zhu J, Dong W, Yang J. Effects of cadmium stress on xanthine oxidase and antioxidant enzyme activities in Boleophthalmus pectinirostris liver. Ying Yong Sheng Tai Xue Bao 17: 1310-1314 (2006)   PUBMED
29 Chan HM, Cherian MG. Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology 72: 281-290 (1992)   DOI   ScienceOn
30 Onosaka S, Cherian MG. The induced synthesis of metallothionein in various tissues of rats in response to metals. Toxicology 22: 91- 101 (1981)   DOI   ScienceOn
31 Park JA, Kim MK. Effect of Korean native plant diet on lipid metabolism, antioxidative capacity, and camdmium detoxification in rats. Korean J. Nutr. 32: 353-368 (1999)
32 Morita K, Matsueda T, Iida T, Hasegawa T. Chlorella accelerates dioxin excretion in rats. J. Nutr. 129: 1731-1736 (1999)
33 Hayes SD, McLellan LL. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stresss. Free Radical Res. 31: 273-300 (1999)   DOI   ScienceOn
34 Atroshi F, Rizzo A, Westermarck T, Alivehmas T. Antioxidant nutrients and mycotoxins. Toxicology 180: 151-167 (2002)   DOI   PUBMED   ScienceOn
35 Kumar SS, Devasagayarm TP, Bhushan B, Verma NC. Scavenging of reactive oxygen species by chlorophyllin: An EST study. Free Radical Res. 35: 563-574 (2001)   DOI   ScienceOn
36 Muller L. Consequences of cadmium toxicity in rat hepatocytes: Mitochondrial dysfunction and lipid peroxidation. Toxicology 40: 285-295 (1986)   DOI   PUBMED   ScienceOn
37 Mayanil CSK, Kazmi SMJ, Baquer NZ. Na, K-ATPase, and Mg ATPase activities in different regions of rat brain during alloxan disbetes. J. Neurochem. 39: 903-908 (1982)   DOI   PUBMED
38 Park JY, Kim MK. Effect of dietary protein and cysteine levels on cadmium toxicity in rats. Korean J. Nutr. 29: 261-471 (1996)
39 Sato M. Biological antioxidant defense system and metallothionein. Jpn. J. Tox. Env. Health 38: 228-239 (1992)   DOI
40 Eaton DL, Toal BF. Evaluation of the Cd/Hb affinity assay for the rapid determination of metallothionein in biological tissue. Toxicol. Appl. Pharmacol. 66: 134-142 (1982)   DOI   ScienceOn
41 Bartosiewicz MJ, Jenkins D, Penns D, Emery J, Buckpitt A. Unique gene expression patterns in liver and kidney associated with exposure to chemical toxicants. J. Pharmacol. Exp. Ther. 297: 895- 905 (2001)
42 Hussain T, Shukla GS, Chandra SV. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacol. Toxicol. 60: 355-359 (1987)   DOI   ScienceOn
43 Johnson MK, Loo G. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res. 459: 211-218 (2000)   DOI   ScienceOn
44 KFDA. Food Code. Korea Food & Drug Administration, Seoul, Korea (2005)
45 Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radical Bio. Med. 40: 940-951 (2006)   DOI   ScienceOn
46 Erdogan Z, Erdogan S, Celik S, Unlu A. Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers. Biol. Trace Elem. Res. 104: 19-32 (2005)   DOI   PUBMED   ScienceOn
47 Stajn A, Zikic RV, Ognjanovic B, Saicic ZS, Pavlovic SZ, Kostic MM, Petrovic VM. Effect of cadmium and selenium on the antioxidant defense system in rat kidneys. Comp. Biochem. Phys. C 117: 167-172 (1997)
48 Shim JA, Son YA, Park JM, Kim MK. Effect of chlorella intake on cadmium metabolism in rats. Nutrition RP 3: 15-22 (2008)   DOI
49 Ossola JO, Tomaro ML. Heme oxygenase induction by camdium chloreid: Evidence for oxidative stress involvement. Toxicology 104: 141-147 (1995)   DOI   PUBMED   ScienceOn
50 Valko M, Morris H, Cronin MTD. Metals, toxicity, and oxidative stress. Curr. Med. Chem. 12: 1161-1208 (2005)   DOI   ScienceOn
51 Eaton DL, Cherian MG. Determination of metallothionein in tissue by cadmium-hemoglobin affinity assay. Methods Enzymol. 205: 83- 88 (1991)   DOI   PUBMED
52 Halliwell B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 344: 721-724 (1994)   DOI   ScienceOn
53 Shibata S, Natori Y, Nishhara T, Tomisaka K, Matsumoto K, Sansawa H, Nguyen VC. Antioxidant and anti-cataract effects of chlorella on rats with streptozocin-induced diabetes. J Nutr. Sci. Vitaminol. 49: 334-339 (2003)   DOI   PUBMED   ScienceOn
54 Shibata S, Oda K, Onodera-Masuoka N, Matsubara S, Kikuchi- Hayakawa H, Ishikawa F, Iwabuchi A, Sansawa H. Hypocholesterolemic effects of indigestible fraction of Chlorella regularis in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 47: 373-377 (2001)   DOI   PUBMED   ScienceOn
55 Shim JY, Shin HS, Han JG, Park HS, Lim BL, Chung KW, Om AS. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats. J. Med. Food 11: 479-485 (2008)   DOI   ScienceOn